The architecture of cell differentiation in choanoflagellates and sponge choanocytes

Laundon, Davis and Larson, Ben T. and McDonald, Kent and King, Nicole and Burkhardt, Pawel and Technau, Ulrich (2019) The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLOS Biology, 17 (4). e3000226. ISSN 1545-7885

[thumbnail of file (1).pdf] Text
file (1).pdf - Published Version

Download (3MB)

Abstract

Although collar cells are conserved across animals and their closest relatives, the choanoflagellates, little is known about their ancestry, their subcellular architecture, or how they differentiate. The choanoflagellate Salpingoeca rosetta expresses genes necessary for animal development and can alternate between unicellular and multicellular states, making it a powerful model for investigating the origin of animal multicellularity and mechanisms underlying cell differentiation. To compare the subcellular architecture of solitary collar cells in S. rosetta with that of multicellular ‘rosette’ colonies and collar cells in sponges, we reconstructed entire cells in 3D through transmission electron microscopy on serial ultrathin sections. Structural analysis of our 3D reconstructions revealed important differences between single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid morphology consistent with higher levels of macropinocytotic activity. Comparison of multiple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell–cell contact networks, and colony arrangement. Importantly, we uncovered the presence of elongated cells in some rosette colonies that likely represent a distinct and differentiated cell type, pointing toward spatial cell differentiation. Intercellular bridges within choanoflagellate colonies displayed a variety of morphologies and connected some but not all neighbouring cells. Reconstruction of sponge choanocytes revealed ultrastructural commonalities but also differences in major organelle composition in comparison to choanoflagellates. Together, our comparative reconstructions uncover the architecture of cell differentiation in choanoflagellates and sponge choanocytes and constitute an important step in reconstructing the cell biology of the last common ancestor of animals.

Item Type: Article
Subjects: South Asian Library > Biological Science
Depositing User: Unnamed user with email support@southasianlibrary.com
Date Deposited: 23 Jan 2023 09:22
Last Modified: 17 Jun 2024 07:02
URI: http://journal.repositoryarticle.com/id/eprint/22

Actions (login required)

View Item
View Item