
British Journal of Mathematics & Computer Science

15(2): 1-11, 2016, Article no.BJMCS.24365

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

New Analytic Technique for the Solution of Nth Order
Nonlinear Two-point Boundary Value Problems

Saheed Ojo Akindeinde1
∗
and Eric Okyere2

1Department of Mathematics, Obafemi Awolowo University, PMB 220005, Ile-Ife, Nigeria.
2Department of Basic Sciences, University of Health and Allied Sciences, School of Basic and

Biomedical Sciences, PMB 31, Ho, Volta Region, Ghana.

Authors’ contributions

This work was carried out in collaboration between both authors. Author SOA designed the study,
wrote the first and revised draft of the manuscript. Author EO implemented numerical examples

and managed literature searches. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/24365
Editor(s):

(1) Mohd Zuki Salleh, Universiti Malaysia Pahang, Malaysia.
Reviewers:

(1) Pedro Pablo Crdenas Alzate, Technological University of Pereira, Colombia.
(2) Yan Luo, Hunan University of Science and Technology, China.

Complete Peer review History: http://sciencedomain.org/review-history/13530

Received: 16th January 2016

Accepted: 15th February 2016

Original Research Article Published: 3rd March 2016

Abstract

In this article, a new analytic technique based on Parker-Sochacki iteration is introduced
for computing series solution of a general nonlinear two-point boundary value problems with
Dirichlet and Neumann boundary conditions. For problems with or without analytic solution,
we found out that this easy-to-implement method produced highly accurate results without
linearization when compared with their closed form solutions.

Keywords: Parker-Sochacki method; nonlinear boundary value problem; power series solution.

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

*Corresponding author: E-mail: saheed.akindeinde@gmail.com;

www.sciencedomain.org
http://sciencedomain.org/review-history/13530


Akindeinde and Okyere; BJMCS, 15(2), 1-11, 2016; Article no.BJMCS.24365

1 Introduction

Non-linear boundary value problems arise naturally in the modeling of real life problems in
Engineering and Biology. The computation of closed form solutions to these problems has remained
elusive to researchers for many years. Recently, research efforts have been devoted to computing
approximate solution to such boundary value problems. Solution approximation techniques such as
homotopy perturbation method (HPM) [1], [2], homotopy analysis method (HAM)[3], variational
iteration method (VIM) [4] have been developed and applied to problems in the literature. While
reports abound for cases where these celebrated methods have been successfully applied, these
methods nevertheless have their own shortcomings. For instance, HPM is not accessible to problems
with no small parameters, successful computation of Lagrange multiplier is an unavoidable hurdle
in the application of VIM. In general, it has been reported that the solution produced by all these
approximation techniques for BVP in the literature are only approximations of their corresponding
Maclaurin series solution [5]. For this reason, Maclaurin series solution to BVP remains important
either to compute the series solution to the problem under consideration or to validate already
existing results (via other approximation techniques).

In this article, we are concerned with finding analytic solution to a general two-point boundary
value problem of the form

dky

dxk
(x) = f

(
x, y,

dy

dx
,
d2y

dx2
. . . ,

dk−1y

dxk−1

)
, a < x < b, k ∈ N (1.1)

with boundary conditions

diy

dxi
(a) = αi,

djy

dxj
(b) = βi, i, j ∈ {0, 1, 2, . . . , k − 1}, αi, βi ∈ N. (1.2)

Existence results for such problems can be found for instance in [6]. Here, we demonstrate the
application and simplicity of computing the series solution of boundary value problem (BVP) of
type (1.1) using the Parker-Sochacki Method. The Parker-Sochacki (PS) Method [7] is an iterative
procedure for computing the coefficients of power series solution of first order initial value problems.
Therefore by reducing problem (1.1) to a first order system, and computing all the missing initial
data, the PS method is applied to generate the coefficients of the Maclaurin series expansion of the
solution function through a recursive algorithm. The generated coefficients turned out to coincide
with first Nth Picard iterates of the same problem. However, it is worth mentioning that the
proposed method is devoid of known impracticality of the Picard iteration.

The PS method has received research attentions in the past years both for initial value problems
and partial differential equations see, e.g, [8], [9], [10], [11]. In this paper, for the first time, the
method is applied to a general nonlinear two-point boundary value problems. As an example of
higher order problem, in Section 4, the method is successfully applied to the Falkner-Skan equation
on finite domain.

2 The Parker-Sochacki Method

Here we demonstrate the PS method by considering a general first order system

y′ = f(t, y), t ∈ (t0, T ], y(t0) = y0 (2.1)

where t0, T ∈ R are constants satisfying t0 ≤ T and f : (t0, T ]× Rn → Rn is a polynomial function
and n ≥ 1. Without loss of generality, let us choose t0 = 0. Note that this choice is not a restriction
on the applicability of the method as the scaling t → t− t0 can always bring problems with t0 ̸= 0
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to this case. The procedure to applying PS method to (2.1) goes thus: firstly we assume series
solution for all the dependent variables

y =
N∑
i=0

yit
i, y′ =

N∑
i=0

y′
it

i. (2.2)

Next, differentiating and shifting the indexes appropriately, it holds

y′ =
dy

dt

(
N∑
i=0

yit
i

)
=

N∑
i=0

iyit
i−1 =

N∑
i=0

(i+ 1)yi+1t
i.

Hence we obtain
∑N

i=0 y
′
it

i =
∑N

i=0(i + 1)yi+1t
i, which in turn yields a recurrence relation for the

coefficients

yi+1 =
y′
i

i+ 1
=

f(t, yi)

i+ 1
(2.3)

with y0 = y(0). Finally, using the above coefficients in (2.2), the truncated series solution

y(t) =

N∑
i=0

yit
i (2.4)

is obtained.

2.1 Operations on power series

Based on the explicit form of f(t, yi) in (2.3), one often have to perform basic arithmetic operations
on power series in order to successfully apply PS method. While addition and subtraction is
straightforward [12], those of multiplication and division are not easy to come by. Let x =∑

i≥0 xit
i, y =

∑
i≥0 yit

i. It has been established in [12] that the product (called the Cauchy
product) of the two series is given by

p =

∑
i≥0

xit
i

∑
i≥0

yit
i

 =
∑
i≥0

pit
i (2.5)

where the coefficients pi are recursively given by

pi =

i∑
j=0

yjxi−j .

Integer powers of series can therefore be computed by repeated use of the Cauchy product above.
The division formula for power series also follows from (2.5). If we define the series w = x

y
then

(2.5) implies that

xi =

i∑
j=0

yjwi−j .

Assuming that y0 ̸= 0, rearranging the terms gives

wi =
1

y0

(
xi −

i∑
j=0

wjyi−j

)
.

For cases where division by zero arise, we refer to [13] for a smart way of circumventing this problem
using the idea of ‘shifting’ the series until the first non-zero y0.
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2.2 Illustrative example

Example 2.1. We consider the initial value problem

y′′(t) + 3y(t)− 2y(t)3 = cos t sin 2t, y(0) = 0, y′(0) = 1.

Employing the variable substitutions u = y, v = y′, w = sin t, z = cos t, the problem reduces to a first
order system

u′ = v, v′ = 2w − 2w3 + 2u3 − 3u,w′ = z, z′ = −w.

Now applying (2.3) to each of the first order problem, we obtain the difference scheme

ui+1 =
vi

i+ 1
, u0 = 0 (2.6)

vi+1 =
2wi − 2(w3)i + 2(u3)i − 3ui

i+ 1
, v0 = 1 (2.7)

wi+1 =
zi

i+ 1
, w0 = 0 (2.8)

zi+1 = − wi

i+ 1
, z0 = 1 (2.9)

whose first five iterates are computed to
u1

v1
w1

z1

 =


1
0
1
0

 ,


u2

v2
w2

z2

 =


0

−1/2
0

−1/2

 ,


u3

v3
w3

z3

 =


−1/6
0

−1/6
0

 ,


u4

v4
w4

z4

 =


0

1/24
0

1/24

 ,


u5

v5
w5

z5

 =


1/120

0
1/120

0

 .

Hence, according to (2.4), the series solution is obtained (for N = 19) as

y(t) =

N∑
i=0

uit
i = t− 1

6
t3 +

1

120
t5 − 1

5040
t7 +

1

362880
t9

− 1

39916800
t11 +

1

6227020800
t13 − 1

1307674368000
t15

+
1

355687428096000
t17 − 1

121645100408832000
t19 +O(t20)

which is in excellent agreement, term by term and up to that order, with the Maclaurin series of the
exact solution y(t) = sin t.

Remark 2.1. The applicability of the PS method to boundary value problems become limpid as
soon as the missing initial conditions in the problem are computed. Several methods abound in
the literature for computing missing initial data in boundary value problems. The most popular
among these methods is the shooting method, which remains an important method as long as a
convergent algorithm can be devised. Other known methods include the Lie Group method (or
group transformation technique) [14, Chap. 9] and the Invariant Imbedding methods [15]. In the
sequel, we shall briefly discuss the general shooting procedure for second order two-point boundary
value problems with the assumption that the straightforward extension to higher order problems is
clear.
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3 Computation of Missing Initial Data

3.1 Shooting method

To illustrate the basic idea of shooting method, let us consider the general second-order nonlinear
boundary value problem with Dirichlet boundary conditions of the form

y′′(x) = f(x, y, y′), a < x < b, y(a) = α, y(b) = β. (3.1)

The main idea of shooting method is to replace the above boundary value problem by a corresponding
initial value problem

w′′(x) = f(x,w,w′), a < x < b, w(a) = α, w′(a) = s (3.2)

where s = sk is obtained iteratively in such a way that the other boundary condition holds via

lim
k→∞

w(b, sk) = β.

In other words, the boundary condition at y(b) = β is enforced by solving the nonlinear equation

g(s) = w(b, s)− β = 0. (3.3)

The common nonlinear solvers for such problems are the Newton and Secant methods. Newton’s
method applied to (3.3) gives an iterative scheme

sk = sk−1 −
g(sk−1)(

dg
ds

)
(b, sk−1)

= sk−1 −
w(b, sk−1)− β(

∂w
∂s

)
(b, sk−1)

.

Note that the term ∂w
∂s

(b, sk−1) in the above is not available since no explicit solution of (3.2) is
available at this stage. Thus to compute ∂w

∂s
(b, sk−1), we assume w = w(x, s) in (3.2) where the

variables x and s are assumed independent. It therefore holds

∂

∂s
w′′(x, s) =

∂f

∂s
(x,w(x, s), w′(x, s))

= fw(x,w(x, s), w′(x, s))
∂w

∂s
+ fw′(x,w(x, s), w′(x, s))

∂w′

∂s
.

If we set the unknown slope ∂w
∂s

(b, sk−1) = z(x, sk−1) then z(x, sk−1) is a solution of

z′′ = fw(x,w,w′)z + fw′(x,w,w′)z′ (3.4)

with initial conditions z(a) = 0, z′(a) = 1.

Altogether, the missing initial data s = y′(a) is obtained by solving iteratively

w′′(x) = f(x,w,w′), a < x < b, w(a) = α, w′(a) = sk−1; (3.5)

z′′ = fw(x,w,w′)z + fw′(x,w,w′)z′, z(a) = 0, z′(a) = 1; (3.6)

sk = sk−1 −
w(b, sk−1)− β(

∂w
∂s

)
(b, sk−1)

. (3.7)

The approach described above extends to higher order problems and cases of multiple missing data.
However, we admit that dealing with the latter becomes more challenging. In the sequel, we describe
a method that comes handy in the case of multiple missing initial conditions.
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3.2 Root finding algorithm

Here the missing data are set to some constant parameters as in (3.2). The corresponding initial
value problem is then solved using the proposed method as illustrated in Example 2.1. Finally, the
obtained series solution is truncated and upon imposing the remaining boundary condition(s), the
missing data are computed with the aid of root finding algorithm (e.g. fsolve in Maple) to obtain
an approximation to the unknown initial data.

4 Examples

Example 4.1. We consider the Dirichlet-Dirichlet BVP

y′′ = 0.5(1 + x+ y)3, 0 < x < 1, y(0) = y(1) = 0

with exact solution y(x) = 2
2−x

− x− 1.

Here, f(x,w,w′) = 0.5(1 + x+ w)3. So starting with s = 0 we solve

w′′ = 0.5(1 + x+ w)3, w(0) = 0, w′(0) = sk−1, (4.1)

v′′ = 1.5v(1 + x+ w)2, v(0) = 1, v′(0) = 1, (4.2)

sk = sk−1 −
w(1, sk−1)(
∂w
∂s

)
(1, sk−1)

(4.3)

iteratively to obtain s = s12 = −0.5. We now solve the IVP

y′′ = 0.5(1 + x+ y)3, y(0) = 0, y′(0) = −0.5

using the proposed method. Therefore we set u = y, v = y′, t = 1+ x+ y to reduce the problem to a
first order system

u′ = v, v′ = 0.5t3, t′ = v

and consequently obtained the difference scheme

ui+1 =
vi

i+ 1
, u0 = 0 (4.4)

vi+1 =
0.5(t3)i
i+ 1

, v0 = −0.5 (4.5)

ti+1 =
vi

i+ 1
, t0 = 1, t1 = 1 + v0. (4.6)

In the above, the term (t3)i is obtained through repeated use of Cauchy product as

(t3)i =
i∑

j=0

(
j∑

k=0

tktj−k

)
ti−j .

The first few iterates of (4.4)-(4.6) were computed asu1

v1
t1

 =

−0.5
0.5
0.5

 ,

u2

v2
t2

 =

 0.25
0.375
0.25

 ,

u3

v3
t3

 =

0.125
0.25
0.125

 , . . .

from which the series solution is obtained (for N = 10) as

y(x) = −0.5x+ 0.25x2 + 0.125x3 + 0.0625x4 + 0.03125x5 (4.7)

+ 0.015625x6 + 0.0078125x7 + 0.00390625x8 (4.8)

+ 0.001953125x9 + 0.0009765625x10 +O(x11). (4.9)
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Observe that the solution obtained is exact, up to that order N, when compared with Taylor expansion
of the exact solution

2

2− x
− x− 1 = −1

2
x+

1

4
x2 +

1

8
x3 +

1

16
x4 +

1

32
x5 (4.10)

+
1

64
x6 +

1

128
x7 +

1

256
x8 +

1

512
x9 (4.11)

+
1

1024
x10 +O

(
x11) . (4.12)

Example 4.2. The nonlinear Dirichlet-Dirichlet BVP

y′′ = − (y′)2

y
, y(0) = 1, y(1) = 2

with exact solution y(x) =
√
3x+ 1.

Following (3.1), we obtained on fourth iteration y′(0) = 1.5. Therefore, we solve the IVP

y′′ = − (y′)2

y
, y(0) = 1, y′(0) = 1.5

through the PS method by setting v = y′, w = 1/y and solving the recursion

yi+1 =
vi

i+ 1
, y0 = 1, (4.13)

vi+1 = − (v2w)i
i+ 1

, v0 = 1.5 (4.14)

wi+1 = − (w2v)i
i+ 1

, w0 = 1/y0 = 1. (4.15)

For the coefficients (wv2)i and (w2v)i above, repeated use of Cauchy product yields

(wv2)i =

i∑
j=0

(
j∑

k=0

vkvj−k

)
wi−j , (w2v)i =

i∑
j=0

(
j∑

k=0

wkwj−k

)
vi−j (4.16)

which are then used in (4.13)-(4.15) to obtainy1
v1
w1

 =

 1.5
−2.25
−1.5

 ,

y2
v2
w2

 =

−1.125
5.0625
3.375

 ,

y3
v3
w3

 =

 1.6875
−12.65625
−8.4375

 ,

y4
v4
w4

 =

−3.1640625
33.22265625
22.1484375

 , . . .

Subsequently, the series solution to the BVP is

y(x) = 1 + 1.5x− 1.125x2 + 1.6875x3 − 3.1640625x4 (4.17)

+ 6.64453125x5 − 14.95019531x6 + 35.23974610x7 (4.18)

− 85.89688111x8 + 214.7422028x9 − 547.5926171x10 (4.19)

+ 1418.762690x11 − 3724.252061x12 (4.20)

+ 9883.592008x13 +O(x14) (4.21)
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which agrees well with Taylor expansion of the exact solution

√
3x+ 1 = 1 +

3

2
x− 9

8
x2 +

27

16
x3 − 405

128
x4 +

1701

256
x5 (4.22)

− 15309

1024
x6 +

72171

2048
x7 − 2814669

32768
x8 +

14073345

65536
x9 (4.23)

− 143548119

262144
x10 +

743840253

524288
x11 − 15620645313

4194304
x12 (4.24)

+
82909578969

8388608
x13 +O

(
x14) . (4.25)

Example 4.3. We consider the problem with Neumman-Neumann boundary conditions

y′′ = −e−2y, 0 < x < 1, y′(0) = 1, y′(1) =
1

2

whose exact solution is known to be y(x) = ln(1 + x).

The missing parameter s = y(0) is obtained on first iteration of shooting algorithm as s = y(0) =
−2.8× 10−9. Hence it suffices to solve the IVP

y′′ = −e−2y, 0 < x < 1, y(0) = −2.8× 10−9, y′(0) = 1

with the PS method. Employing the variable substitution u = y, v = y′, w = e−2y the problem
reduces to

u′ = v, v′ = −w, w′ = −2wv (4.26)

whose PS solution is obtained iteratively through

ui+1 =
vi

i+ 1
, u0 = −2.8× 10−9 (4.27)

vi+1 = − wi

i+ 1
, v0 = 1 (4.28)

wi+1 = −2

∑i
j=0 vjwi−j

i+ 1
, w0 = e−2u0 . (4.29)

We obtained

u1 = 1, u2 = −1

2
, u3 =

1

3
, u4 = −1

4
, u5 =

1

5
, . . . , ui = (−1)i+1 1

i
.

Hence, in line with the PS method, the series solution is given by (choosing N = ∞)

y(x) =

∞∑
i=0

uix
i =

∞∑
i=0

(−1)i+1 x
i

i
= ln(1 + x).

Example 4.4 (The Falkner-Skan Equation). Consider the boundary layer flow problem given by
the third order BVP

f ′′′ + ff ′′ + β(1− f ′2) = 0, f(0) = 0, f ′(0) = 0, lim
η→∞

f ′(η) = 1. (4.30)

Let us set the missing data s = f ′′(0) so that we consider the IVP

f ′′′ + ff ′′ + β(1− f ′2), f(0) = 0, f ′(0) = 0, f ′′(0) = s. (4.31)

8
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The IVP (4.31) is now solved using the PS method. Adopting the variable substitution u = f ′, z =
f ′′, problem (4.31) reduces to the system

f ′ = u, f(0) = 0, (4.32)

u′ = z, u(0) = 0, (4.33)

z′ = −fz + βu2 − β, z(0) = s. (4.34)

The PS solution is thus obtained via the difference equations

fi+1 =
ui

i+ 1
, f0 = 0, (4.35)

ui+1 =
zi

i+ 1
, u0 = 0, (4.36)

zi+1 =
−(fz)i + β(u2)i

i+ 1
, z0 = s, z1 = −f0z0 + βu2

0 − β. (4.37)

The first few iterates are computed as

f1 = 0, f2 =
s

2
, f3 = −β

6
, f4 = 0, f5 = s2

(
β

60
− 1

120

)
.

The series solution is therefore given by

f(η) =
1

2
sη2 − 1

6
β η3 +

(
β

60
− 1

120

)
s2η5 +

(
1

180
sβ − 1

120
β2s

)
η6 + . . .

For β = 2, and starting with s0 = 1.5, we obtained on seventh iteration of shooting algorithm
s = f ′′(0) = 1.6872 which agrees perfectly with the famous numerical results of [16]. Furthermore,
Table 1 shows the obtained numerical results for f ′(η) and f ′′(η). The behaviors of f ′(η) and f ′′(η)
are in excellent agreement with the theory by [17], namely, that f ′(η) increases with η and f ′′(η)
decays to zero as η → ∞. In the presented results, our truncated (or free) boundary is taken as
η∞ ≈ 2.

Example 4.5. Consider the fifth order BVP

u(5)(x) = e−xu2(x), 0 < x < 1

subject to
u(0) = u′(0) = u′′(0) = 1, u(1) = u′(1) = e

with exact solution u(x) = ex.

Suppose we can write u(x) =
∑

i≥0 uix
i and and let us denote the missing initial data by u′′′(0) =

a, u(4)(0) = b. The constants a and b are to be determined from the boundary conditions u(1) =
u′(1) = e. Adopting the variable substitutions v = u′, w = u′′, t = u′′′, z = u(4), p = e−x the BVP
reduces to a first order system

u′ = v; v′ = w; w′ = t; t′ = z; z′ = pu2; p′ = −p.

Then the coefficients ui are obtained recursively through

ui+1 =
vi

i+ 1
; vi+1 =

wi

i+ 1
; wi+1 =

ti
i+ 1

; ti+1 =
zi

i+ 1
; zi+1 =

(pu2)i
i+ 1

; pi+1 = − pi
i+ 1

with u0 = v0 = w0 = 1, t0 = a, z0 = b.

We computed

u1 = 1, u2 =
1

2
, u3 =

a

6
, u4 =

b

24
, u5 =

1

120
, u6 =

1

720
, u7 =

1

5040
, u8 =

(
a

20160
− 1

40320

)

9
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and so on. Hence the desired series solution is

u(x) = 1+x+
x2

2
+
ax3

6
+
bx4

24
+

x5

120
+

x6

720
+

x7

5040
+

(
a

20160
− 1

40320

)
x8 +

(
b

181440
− 1

362880

)
x9+. . .

(4.38)
To compute the unknown parameters a and b, we truncate the series solution at N = 15. Upon
imposing the boundary conditions u(1) = u′(1) = e, we obtain through the fsolve command in Maple

a = 0.9999999824, b = 1.000000049.

Hence, the required series solution is

u(x) = 1 + x+
1

2
x2 + 0.1666666637x3 + 0.04166666871x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7

+ 0.00002480158643x8 + 0.000002755732193x9 +
1

3628800
x10 + 0.000000025052108x11

+ 0.0000000020876756x12 + 0.00000000016059047x13 + 1.147072× 10−11 x14

+ 7.64718× 10−13 x15 +O(x16)

which is an excellent approximation of the exact solution ex.

Table 1. Numerical results for f ′(η) and f ′′(η) by the proposed method

η f ′(η) f ′′(η)

0.2 0.29794 1.29688

0.4 0.52189 0.95270

0.6 0.68342 0.67383

0.8 0.79586 0.46106

1.0 0.87170 0.30609

1.2 0.92138 0.19748

1.4 0.95303 0.12391

1.6 0.97263 0.07561

1.8 0.98444 0.04485

2.0 0.99135 0.02582

5 Conclusions

We have introduced a new analytic technique for solving nonlinear boundary value problems. In
addition to the new technique being easy-to-implement, application to various examples in Section 4
revealed that it is also highly accurate. Therefore the proposed method remains a viable alternative
to notable approximation techniques in the literature including the homotopy perturbation method,
variational iteration method and adomian decomposition method among others.
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