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Abstract

A non-overlapping domain decomposition method (DDM) is described to solve optimal boundary
control problems governed by wave equations with absorbing boundary condition. The whole
domain is divided into non-overlapping subdomains, and the global optimal boundary control
problem is decomposed into local problems in these subdomains. An integral mean method
is utilized to present an explicit flux calculation on the inter-domain boundary in order to
communicate the local problems on the interfaces between subdomains. We establish the full
parallel and discrete schemes for solving these local problems, and prove the stability of the
schemes. A priori error estimates in suitable natural norms are derived for the state, co-state
and control variables.
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1 Introduction

Optimal control problems governed by wave equations are widely used in many fields, such as in
medical science [1], seismic wave [2] and acoustic wave [3]. Generally speaking, these optimal control
problems aim to find a control variable which makes the state variable tend to an expected target
state in the process of optimizing (maximize/minimize) the objective functional and meanwhile, the
state and control variables are subjected to wave equations. [4] and [5] considered some numerical
methods for optimal control problems governed by wave equations.

As well known, for the problem on large domain, the traditional numerical methods, such as finite
element methods, always produce large amounts of calculation which can be settled efficiently
by the method of parallel computations. A natural way in parallel computations is the non-
overlapping domain decomposition method (DDM). [6][7][8][9][10][11] discussed the applications
of non-overlapping DDM for optimal boundary control problems governed by partial differential
equations (PDEs). This method can divide the whole domain into many subdomains, and decompose
the global problem into many local problems, which are independent in the subdomains and
can be calculated parallel. Hence, this method can reduce much amounts of calculation. An
important character of this method is how to build inter-domain boundary conditions of state/co-
state variables between subdomains. For an example, for optimal boundary control problems
governed by hyperbolic equations, [11] presented an iterative non-overlapping DDM, utilized Robin
condition as the inter-domain boundary condition and proved the convergence of the method.

When calculating solutions to the problem in an unbounded domain, it is often essential to introduce
artificial boundaries to limit the area of computation. Important fields of applying artificial boundaries
are local weather prediction [12][13], geophysical calculation involving acoustic waves [14] or elastic
waves [15]. For wave equations, Engquist et al. [16] developed the theory of absorbing boundary
condition, which is a kind of artificial boundaries and consists of the time and space derivatives
of the function. This boundary condition not only guarantees stable difference approximations
but also minimizes the (unphysical) artificial reflections which occur at the boundaries. Cowsar,
Dupont and Wheeler [17] proposed the mixed finite element method for linear hyperbolic equation
with absorbing boundary condition. In [18], Bamberger at al. discussed a DDM for the acoustic
wave equation with absorbing boundary condition.

Lagnese et al. [19] studied a time-domain decomposition method for an optimal boundary control
problem governed by wave equations with absorbing boundary condition. The objective functional
consisted of the final time values of both the function and the time derivation of the function. They
decomposed the global optimal control problem into local problems on each time interval, built
inter-domain boundary conditions for state/co-state variables between subdomains, and proved the
convergence of the method.

The purpose of this paper is to present another type of non-overlapping DDM for the model problem
in [19]. Based on our former work [20] and different from the methods in [6][7][8][9][10][11], we utilize
an integral mean method to present an explicit flux calculation on the inter-domain boundary and
establish the non-overlapping domain decomposition scheme. This type of non-overlapping DDM
has been presented for parabolic equation in [20][21][22][23], wave equation [24] and convection-
diffusion equation [25]. Nevertheless, we did not extend this method to optimal boundary control
problems governed by wave equations, especially with absorbing boundary condition. This paper is
one of our sequent research papers. To our best knowledge, there is no similar work on this topic.

An outline of this paper is as follows. In §2, we introduce the optimal boundary control problem
governed by wave equations with absorbing boundary condition, and deduce the co-state equation
and the optimality condition. In §3, we recall the non-overlapping DDM by using the integral mean
method in [20]. Then, we utilize this method to establish the full discrete schemes, and prove the
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stability of the schemes. In §4, we derive a priori error estimates in suitable natural norms for the
state, co-state and control variables. Finally, we draw the conclusions in §5.

2 Optimal Boundary Control Problem

Let Ω ⊂ R2 be a bounded convex domain with smooth boundary ∂Ω and [0, T ] be a time interval.
Let ∂Ω = ΓN∪ΓD, ΓN∩ΓD = ∅, ΓN and ΓD be Neumann and Dirichlet type boundary, respectively.

Throughout the paper, the standard notations [26] are used for the Lebesgue space Lm(Ω), 1 ≤
m ≤ ∞ and the Sobolev space Hs(Ω), 0 ≤ s ≤ ∞ with the associated norms ∥ · ∥s and seminorms
| · |s. We will assume C to be a generic positive constant independent of mesh size h (to be defined
in the next section), but may depend on the size of Ω and can take different values at different
places.

Denote the state space by W = L2(0, T ;V ) with V = H1(Ω) and the control space by X =
L2(0, T ;M) with M ⊆ L2(ΓN ). We consider the following optimal boundary control problem
governed by wave equations with absorbing boundary condition [19]:

min
u∈X

J(u) = min
u∈X

{γ
2
{
∫
Ω

|y(T )− z0|2 +
∫
Ω

|∂y
∂t

(T )− z1|2}+
α

2

∫
ΓN×(0,T )

|u|2
}

(2.1)

where, the state variable y ∈W and control variable u ∈ X satisfy

∂2y(x, t)

∂t2
−∆y(x, t) + cy = f(x, t), in Ω × (0, T ),

∂y(x, t)

∂ν⃗
+
∂y

∂t
= u(x, t), on ΓN × (0, T ),

y(x, t) = 0, on ΓD × (0, T ),

y(x, 0) = y1(x), in Ω,

∂y

∂t
(x, 0) = y2(x), in Ω.

(2.2)

In equations (2.1)-(2.2), ν⃗ is the unit outward normal vector on ΓN , f(x, t), y1(x) and y2(x)
are known functions, z0(x), z1(x) are known target functions, γ and α are positive given wight
coefficients. The boundary condition on ΓN is called as absorbing boundary condition, which
includes the time and space derivatives of the state y. Here, we consider the objective functional
J(u) with final time values of both y and ∂y/∂t. The overall idea of equation (2.1) is to drive y and
∂y/∂t as close as possible to the target state z0(x) and z1(x) respectively, while the second term
penalizes excessive control cost.

According to the optimal control theory in [27][28][29] and [19], we can obtain the adjoint equation
of 

∂2p(x, t)

∂t2
−∆p(x, t) + cp = 0, in Ω× (0, T ),

∂p(x, t)

∂ν⃗
− dtp = 0, on ΓN × (0, T ),

p(x, t) = 0, on ΓD × (0, T ),

p(x, T ) = γ(
∂y

∂t
(T )− z1), in Ω,

∂p

∂t
(x, T ) = −γ(y(T )− z0), in Ω.

(2.3)
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where, p ∈ W is called the co-state variable of y. And, dt : L2(0, T ;M) 7−→ (H1(0, T ;M))∗ is a
bounded linear operator satisfying [19]

< dtp, ϕ >ΓN×(0,T ):= −
∫ T

0

(p,
dϕ

dt
)Mdt, ∀ϕ ∈ H1(0, T ;M).

where, space (H1(0, T ;M))∗ is the dual space of space H1(0, T ;M), < ·, · >ΓN×(0,T ) denotes the
inner product in the

(
H1(0, T ;M))∗,H1(0, T ;M)

)
duality pairing. We note that dtp is not the time

derivative dp/dt of p in the sense of distributions.

We know that when the objective functional J reaches its optimum, the control variable u ∈ X
should satisfy ([27][28][29])

J ′(u)(ū− u) =

∫
ΓN×(0,T )

(αu+ p|ΓN )(ũ− u) ≥ 0, ∀ ũ ∈ X. (2.4)

This inequality is called as the optimality condition.

Then, the optimal boundary control problem (2.1)-(2.2) is equivalent to an optimality system, which
consists of the state equation (2.2), the co-state equation (2.3) and the optimality condition (2.4).
We can get the solutions of equations (2.1)-(2.2) by solving the optimality system (2.2)-(2.4).

3 Non-Overlapping DDM

3.1 Approximation schemes

To avoid large amounts of computational work by the traditional numerical methods to the optimality
system (2.2)-(2.4), we will build a non-overlapping domain decomposition scheme.

For simplicity and without losing generality, we only discuss the case of two subdomains. But
the algorithms and theories can be extended to the case of many subdomains. Divide Ω into two
non-overlapping subdomains Ωi(i = 1, 2) by an inter-domain boundary Γ (see Fig. 1)

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = Γ.

Let ΓD,i = ΓD ∩ ∂Ωi and ΓN,i = ΓN ∩ ∂Ωi, ΓD,i ̸= ∅, ΓN,i ̸= ∅. Define ν⃗Γ to be the unit normal
vector on Γ, which points from Ω1 toward Ω2. We suppose that this decomposition guarantee the
global and local problems hold enough regularities.

 

 

 

 

                          

  

                                               

         ←1ν             Γ→ ν  

          1Γ              1Ω               Γ              2Ω       2ν→  

                                                                   2Γ  

Fig. 1. Subdomains Ωi and inter-domain boundary Γ
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Let Th
i be a quasi-uniform partition of subdomains Ωi(i = 1, 2) and Th = Th

1 ∪ Th
2 . Define

Ω̄ = ∪τ∈Th τ̄ . Here, h denotes the maximal diameter of element τ ∈ T h. For two neighboring
elements τ, τ̄ ∈ Th, they have either only one common vertex or edge. Let V h ⊂ V is a finite
element space satisfying

V h = {v ∈ H1(Ω) : v|τ ∈ P1(τ), ∀ τ ∈ Th},

where P1(τ) denotes the polynomials of degree less than or equal to 1 on τ . Denote Wh =
L2(0, T ;V h)

Similarly, let Th
U,i be a quasi-uniform partition of ΓN,i and Th

U = Th
U,1 ∪ Th

U,2. Let hU denote the
maximal diameter of element τU ∈ Th

U . For two neighboring elements τU , τ
′
U ∈ Th

U , they have only
one common vertex. Let Mh ⊂M is a finite element space satisfying

Mh = {v ∈ L2(ΓN ) : v|τU ∈ P0(τ), ∀ τU ∈ Th
U}.

where P0(τU ) denotes the polynomials of degree 0 (i.e., constant) on τU . DenoteXh = L2(0, T ;Mh).

From definitions above, we note that functions v in Wh have a well-defined jump [v] on Γ:

[v](x) = lim
λ→0+

v(x+ λν⃗Γ)− lim
λ→0−

v(x+ λν⃗Γ). (3.1)

To construct the scheme, for a small given constant 0 < H < min{diameter(Ω1), diameter(Ω2)},
we introduce an integral mean value of a given function v ∈ H1(Ω) on Γ as ([20])

vH =
1

2H

∫ H

−H

v(x+ λν⃗Γ)dλ, ∀ x on Γ. (3.2)

Generally, near the intersection of the boundary ∂Ω and inner boundary Γ, the value of v outside
Ω may be needed to calculate the integral mean value vH in (3.2). For a given function v ∈ L2(Ω),
we define ([20])

Ev(x) =

{
v(x), x ∈ Ω,

v(x̃), x ̸∈ Ω,
(3.3)

where x̃ ∈ Ω denotes the symmetric point of x /∈ Ω with respect to ∂Ω. By (3.3), we know vH has
the value on a strip domainG = {y|y = x+ λν⃗Γ, λ ∈ [−H,H], x onΓ}, see Fig. 2.

 

 

 

 

                                        

  

                                               

         ←1ν             Γ→ ν  

          1Γ              1Ω               Γ              2Ω       2ν→  

                                     H                            2Γ  

                                       H    

                                  

Fig. 2. The strip domain G with width 2H
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Let ∆t be time step size, N = T/∆t, tn = n∆t, n = 1, · · · , N . For a given function v, we adopt the
following notations. Set

vn = v(tn), vn+ 1
2 =

vn+1 + vn

2
,

vn,θ = θvn+1 + (1− 2θ)vn + θvn−1, θ ∈ (0, 1),

∂tv
n =

vn+1 − vn

∆t
, ∂tv

n−1 =
vn − vn−1

∆t
,

δvn =
vn+1 − vn−1

2∆t
, ∂2

t v
n =

vn+1 − 2vn + vn−1

(∆t)2
.

(3.4)

By using of the integral mean non-overlapping DDM scheme in [20], we can define the full discrete
schemes for the optimality system (2.2)-(2.4): Find the approximation solution {Y n, Un}Nn=1 ∈
V h ×Mh satisfying

J(U) =

N−1∑
n=1

α

2

∫
ΓN

|Un, 1
4 |2∆t+ γ

2
{
∫
Ω

|Y N − z0|2 +
∫
Ω

|∂tY N−1 − z1|2}

−γ
4
(∆t)2

{
< [∂tY

N−1 − z1], (∂tY N−1 − z1)ν⃗Γ,H
>Γ + < [Y N − z0], (Y N − z0)ν⃗Γ,H

>Γ

+
KH−1

2
{< [Y N − z0], [Y

N − z0] >Γ + < [∂tY
N−1 − z1], [∂tY

N−1 − z1] >Γ}
}
,

(3.5)
and 

(∂2
t Y

n, v) + (∇Y n, 1
4 ,∇v) + c(Y n, 1

4 , v)+ < Y n−→ν Γ,H
, [v] >Γ

+ < vν⃗Γ,H
, [Y n] >Γ +KH−1 < [Y n], [v] >Γ

= (fn, 1
4 , v)+ < Un, 1

4 , v >ΓN − < δY n, v >ΓN , in Ω,

Y 0 = y1(x), in Ω,

∂tY
0 = y2(x), in Ω,

(3.6)

where ∀ v ∈ V h
0 = {v ∈ V h, v|ΓD = 0};

χn
ν⃗Γ = (∇Eχn) · ν⃗Γ, for χ = Y, v; K =

{
1, if G ⊂ Ω,
2, if G ̸⊂ Ω.

The notation < ·, · >Γ (resp. < ·, · >ΓN ) is denoted as the L2 inner product on the boundary Γ
(resp. ΓN ). On ΓN , δY n is used to approximate ∂y/∂t in order to keep second order convergence
rate for ∆t.

Remark 3.1. In the scheme (3.6), the flux on Γ is computed explicitly from Y n, so that Y n+1 can
be computed on Ω1 and Ω2 fully parallel once Y n, Y n−1 have been got. From the convergence
analysis in Section 4, we will see that this scheme has good approximations.

From the optimal control theory in [27][28][29], we can deduce the full discrete schemes for the
adjoint equation (2.3): Find Pn ∈ V h satisfying

(∂2
t P

n, w) + (∇Pn, 1
4 ,∇w) + c(Pn, 1

4 , w)+ < Pn
ν⃗Γ,H

, [w] >Γ

+ < wν⃗Γ,H
, [Pn] >Γ +KH−1 < [Pn], [w] >Γ=< δPn, w >ΓN , in Ω,

PN = γ(∂tY
N−1 − z1), in Ω,

∂tP
N−1 = −γ(Y N − z0), in Ω,

(3.7)
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for ∀w ∈ V h
0 and for the optimality condition

< αUn, 1
4 + Pn, 1

4 , ũ− Un, 1
4 >ΓN ≥ 0, ∀ ũ ∈ Mh. (3.8)

Hence, we establish the full discrete schemes (3.6)-(3.8) for the optimality system (2.2)-(2.4).

3.2 Stability of approximation schemes

To prove the stability of the full discrete schemes (3.6)-(3.8), we need the following notations and
lemmas. For functions ψ ∈ H1(Ω1) ∪H1(Ω2), we define [20]

|||ψ|||2 = (∇ψ,∇ψ) +KH−1 < [ψ], [ψ] >Γ, (3.9)

and a bilinear form

b(ψ,ψ) = (∇ψ,∇ψ) + 2 < ψν⃗Γ,H
, [ψ] >Γ +KH−1 < [ψ], [ψ] >Γ . (3.10)

Lemma 3.1. [20] There exists a positive constant C0 = 1−
√
2

2
such that for constant H > 0

b(ψ,ψ) ≥ C0|||ψ|||2, ∀ψ ∈ V h. (3.11)

Define an ”energy” norm ([24])

∥ψn∥2E1
= ∥∂tψn∥2 + b(ψn+ 1

2 , ψn+ 1
2 ) + c∥ψn+ 1

2 ∥2

− (∆t)2

4

{
2 < ∂tψn

ν⃗Γ,H
, [∂tψ

n] >Γ +KH−1 < [∂tψ
n], [∂tψ

n] >Γ

}
.

(3.12)

We turn to prove that the ”energy” norm (3.12) is nonnegative under a time step constraint. To
this end, we need the following inverse estimate ([30])

∥∇ψ∥ ≤ C2h
−1∥ψ∥, (3.13)

and the trace inequality

∥ψ∥2L2(Γ) ≤ C3h
−1∥ψ∥2. (3.14)

Lemma 3.2. [24] Denote L = H/h. There exists a positive constant C1 such that for constant
H > 0,

∥ψ∥2E1
≥ 1

2
∥∂tψn∥2 + b(ψn+ 1

2 , ψn+ 1
2 ) + c∥ψn+ 1

2 ∥2, (3.15)

provided that ∆t ≤ C1H, where C1 =

√
2

C2
2L

2 + 3KC3L
.

Lemma 3.3. If f = 0, U = 0, there exists a positive constant C such that for n = 1, 2, · · · , N , the
full discrete schemes (3.6) and (3.7) hold the following estimates in ”energy” norm

∥Y n∥2E1
≤ ∥Y n−1∥2E1

, (3.16)

∥Pn−1∥2E1
≤ ∥Pn∥2E1

. (3.17)
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Proof. Estimate (3.16) can be obtained similarly from the proof of Lemma 3.5 in [24]. In equation
(3.6), we take v = δY n to get that

(∂2
t Y

n, δY n) + (∇Y n, 1
4 ,∇δY n) + c(Y n, 1

4 , δY n)+ < Y
n, 1

4
ν⃗Γ,H

, [δY n] >Γ

+ < δY n
ν⃗Γ,H

, [Y n, 1
4 ] >Γ +KH−1 < [Y n, 1

4 ], [δY n] >Γ + < δY n, δY n >ΓN

=< Y
n, 1

4
ν⃗Γ,H

− Y n
ν⃗Γ,H

, [δY n] >Γ + < δY n
ν⃗Γ,H

, [Y n, 1
4 − Y n] >Γ +KH−1 < [Y n, 1

4 − Y n], [δY n] >Γ .

(3.18)

By the notations (3.4), we have the following results.
(i)

(∂2
t Y

n, δY n) =
1

2∆t
{∥∂tY n∥2 − ∥∂tY n−1∥2}. (3.19)

(ii)

(∇Y n, 1
4 ,∇δY n) + c(Y n, 1

4 , δY n)

=
1

2∆t
{∥∇Y n+ 1

2 ∥2 − ∥∇Y n− 1
2 ∥2}+ c

2∆t
{∥Y n+ 1

2 ∥2 − ∥Y n− 1
2 ∥2}.

(3.20)

(iii)

< Y
n, 1

4
ν⃗Γ,H

, [δY n] >Γ + < δY n
ν⃗Γ,H

, [Y n, 1
4 ] >Γ +KH−1 < [Y n, 1

4 ], [δY n] >Γ

=
1

2∆t

{
2 < Y

n+ 1
2

ν⃗Γ,H
, [Y n+ 1

2 ] >Γ +KH−1 < [Y n+ 1
2 ], [Y n+ 1

2 ] >Γ

− 2 < Y
n− 1

2
ν⃗Γ,H

, [Y n− 1
2 ] >Γ −KH−1 < [Y n− 1

2 ], [Y n− 1
2 ] >Γ

}
.

(3.21)

(iv)

< Y
n, 1

4
ν⃗Γ,H

− Y n
ν⃗Γ,H

, [δY n] >Γ + < δY n
ν⃗Γ,H

, [Y n, 1
4 − Y n] >Γ +KH−1 < [Y n, 1

4 − Y n], [δY n] >Γ

=
∆t

8

{
2 < ∂tY n

ν⃗Γ,H
, [∂tY

n] >Γ +KH−1 < [∂tY
n], [∂tY

n] >Γ

− 2 < ∂tY
n−1
ν⃗Γ,H

, [∂tY
n−1] >Γ −KH−1 < [∂tY

n−1], [∂tY
n−1] >Γ

}
.

(3.22)

Combining the above equalities (3.19)-(3.22) together, we can see that

∥Y n∥2E1
+ 2∆t < δY n, δY n >ΓN= ∥Y n−1∥2E1

. (3.23)

Then, we have estimate (3.16).

Now, we turn to prove estimate (3.17). In equation (3.7), we take w = −δPn to have

(∂2
t P

n,−δPn) + (∇Pn, 1
4 ,−∇(δPn)) + c(Pn, 1

4 ,−δPn)+ < P
n, 1

4
ν⃗Γ,H

, [−δPn] >Γ

+ < −δPn
ν⃗Γ,H

, [Pn, 1
4 ] >Γ +KH−1 < [Pn, 1

4 ], [−δPn] >Γ +
{
< P

n, 1
4

ν⃗Γ,H
− Pn

ν⃗Γ,H
,

[δPn] >Γ + < δPn
ν⃗Γ,H

, [Pn, 1
4 − Pn] >Γ +KH−1 < [Pn, 1

4 − Pn], [δPn] >Γ

}
= < δPn,−δPn >ΓN .

(3.24)
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By the notations (3.4) and direct calculations to the terms on the left-hand side of equation (3.24),
we have the following results.

(1)

(∂2
t P

n,−δPn) = − 1

2∆t

{
∥∂tPn∥2 − ∥∂tPn−1∥2

}
. (3.25)

(2)

(∇Pn, 1
4 ,−∇δPn) + c(Pn, 1

4 ,−δPn)

= − 1

2∆t

{
∥∇Pn+ 1

2 ∥2 − ∥∇Pn− 1
2 ∥2

}
− c

2∆t

{
∥Pn+ 1

2 ∥2 − ∥Pn− 1
2 ∥2

}
.

(3.26)

(3)

< P
n, 1

4
ν⃗Γ,H

, [−δPn] >Γ + < −δPn
ν⃗Γ,H

, [Pn, 1
4 ] >Γ +KH−1 < [Pn, 1

4 ], [−δPn] >Γ

= − 1

2∆t

{
2 < P

n+ 1
2

ν⃗Γ,H
, [Pn+ 1

2 ] >Γ+KH
−1 < [Pn+ 1

2 ], [Pn+ 1
2 ] >Γ

−2 < P
n− 1

2
ν⃗Γ,H

, [Pn− 1
2 ] >Γ −KH−1 < [Pn− 1

2 ], [Pn− 1
2 ] >Γ

}
.

(3.27)

(4)

< P
n, 1

4
ν⃗Γ,H

− Pn
ν⃗Γ,H

, [−δPn] >Γ + < −δPn
ν⃗Γ,H

, [Pn, 1
4 − Pn] >Γ

+KH−1 < [Pn, 1
4 − Pn], [−δPn] >Γ

= −∆t

8

{
2 < ∂tPn

ν⃗Γ,H
, [∂tP

n] >Γ +KH−1 < [∂tP
n], [∂tP

n] >Γ

−2 < ∂tP
n−1
ν⃗Γ,H

, [∂tP
n−1] >Γ −KH−1 < [∂tP

n−1], [∂tP
n−1] >Γ

}
.

(3.28)

By the above equalities (3.25)-(3.28), it follows

∥Pn∥2E1
− 2∆t < δPn, δPn >ΓN= ∥Pn−1∥2E1

. (3.29)

From this equation, it follows the estimate (3.17).

Remark 3.2. The results (3.16)-(3.17) show that the full discrete schemes (3.6)-(3.7) keep the
conservation of ”energy” under the condition f = 0, U = 0. This means that the schemes (3.6)-
(3.7) are stable.

4 Error Estimates

4.1 Auxiliary lemmas

First, the following approximation properties exist.

Lemma 4.1. [20] For smooth enough function v, there hold estimates

∥vH − v∥L2(Γ) ≤
√
2H∥∇v∥L2(Ω), (4.1)

∥vH − v∥L∞(Γ) ≤ CH2∥v∥W2,∞(Ω), (4.2)

and

v(x)− vH(x) = −1

6
H2vν⃗2

Γ
(x)− 1

120
H4vν⃗4

Γ
(x) + o(H6), ∀ x on Γ, (4.3)

where vν⃗2
Γ
(x) and vν⃗4

Γ
(x) are the second and fourth order normal derivatives of v on Γ, respectively.

9
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Define an average operator Πh :M → Mh on element τU satisfying

Πhu|τU =
1

|τU |

∫
τU

u, ∀ u ∈ M, τU ∈ Th
U , (4.4)

where |τU | is the measure of element τU .

Lemma 4.2. [31] For the average operator Πh, there exists a positive constant C independent of
hU such that

∥ψ −Πhψ∥L2(τU ) ≤ ChU∥ψ∥H1(τU ), ∀ ψ ∈ H1(τU ). (4.5)

Similar to the method of reference [32], we introduce an auxiliary problem: Find intermediate
variables {Y n(u), Pn(u)}Nn=1 ∈ V h × V h, n = 1, 2, · · · , N satisfying ∀ v, w ∈ V h

0

(∂2
t Y

n(u), v) + (∇Y n, 1
4 (u),∇v) + c(Y n, 1

4 (u), v)+ < Y n
ν⃗Γ,H

(u), [v] >Γ

+ < vν⃗Γ,H
, [Y n(u)] >Γ +KH−1 < [Y n(u)], [v] >Γ

= (fn, 1
4 , v)+ < un, 1

4 , v >ΓN − < δY n(u), v >ΓN , in Ω,

Y 0(u) = y1, in Ω,

∂tY
0(u) = y2, in Ω,

(4.6)

and 

(∂2
t P

n(u), w) + (∇Pn, 1
4 (u),∇w) + c(Pn, 1

4 (u), w)+ < Pn
ν⃗Γ,H

(u), [w] >Γ

+ < wν⃗Γ,H
, [Pn(u)] >Γ +KH−1 < [Pn(u)], [w] >Γ

=< δPn(u), w >ΓN , in Ω,

PN (u) = PN + (Y N (u)− Y N ), in Ω,

∂tP
N−1(u) = ∂tP

N−1 + (∂tY
N−1(u)− ∂tY

N−1), in Ω.

(4.7)

Let {
θn = Y n − Y n(u), ηn = yn − Y n(u), n = 0, 1, 2, · · · , N,
ζn = Pn − Pn(u), ξn = pn − Pn(u), n = N,N − 1, · · · , 0. (4.8)

It is clear to see that θ0 = θ1 = 0, ζN = θN , ∂tζ
N−1 = ∂tθ

N−1.

Lemma 4.3. Let {Y n, Pn} and {Y n(u), Pn(u)} be the solutions of the full discrete schemes (3.6)-
(3.8) and the auxiliary problem (4.6)-(4.7), respectively. Then, there exists a positive constant C
independent of hU such that

max
0≤n≤N

∥∂tθn∥2 + max
0≤n≤N

∥θn∥2 ≤ C∥u− U∥2l2(0,T ;L2(ΓN )), (4.9)

max
0≤n≤N

∥∂tζn∥2 + max
0≤n≤N

∥ζn∥2 ≤ C∥u− U∥2l2(0,T ;L2(ΓN )), (4.10)

where

∥u− U∥2l2(0,T ;L2(ΓN ))

Def.
=

N−1∑
n=1

∆t∥un, 1
4 − Un, 1

4 ∥2L2(ΓN ).

Proof. Subtracting equation (4.6) from equation (3.6), we obtain ∀ v ∈ V h
0

(∂2
t θ

n, v) + (∇θn, 1
4 ,∇v) + c(θn, 1

4 , v)+ < θnν⃗Γ,H
, [v] >Γ + < vν⃗Γ,H

, [θn] >Γ

+KH−1 < [θn], [v] >Γ=< Un, 1
4 − un, 1

4 , v >ΓN − < δθn, v >ΓN .
(4.11)

10
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Take v = δθn in equation (4.11) to have

(∂2
t θ

n, δθn) + (∇θn, 1
4 ,∇δθn) + c(θn, 1

4 , δθn)+ < θnν⃗Γ,H
, [δθn] >Γ + < δθnν⃗Γ,H

, [θn] >Γ

+KH−1 < [θn], [δθn] >Γ=< Un, 1
4 − un, 1

4 , δθn >Γ − < δθn, δθn >ΓN .
(4.12)

By the notations (3.4), we know

c(θn, 1
4 , δθn) =

c

2∆t
{∥θn+ 1

2 ∥2 − ∥θn− 1
2 ∥2}. (4.13)

From the proof of Lemma 3.3, equations (3.12) and (4.13), it follows

the left-hand side of equation (4.12) =
1

2∆t
{∥θn∥2E1

− ∥θn−1∥2E1
}. (4.14)

Analyzing the right-hand side of equation (4.12), we get

| < Un, 1
4 − un, 1

4 , δθn >ΓN | ≤ ε{∥∂tθn∥2 + ∥∂tθn−1∥2}+ C∥Un, 1
4 − un, 1

4 ∥2L2(ΓN ), (4.15)

and
| < δθn, δθn >ΓN | ≤ C{∥∂tθn∥2 + ∥∂tθn−1∥2}, (4.16)

where 0 < ε < 1
4
is chosen.

Combining estimates (4.14)-(4.16) together, multiplying both sides by 2∆t, summing time up to n,
and using the initial condition θ0 = θ1 = 0, we find

∥θn∥2E1
≤ C∆t

n∑
l=1

{∥∂θl∥2 + ∥∂θl−1∥2}+ C∆t
n∑

l=1

{∥U l, 1
4 − ul, 1

4 ∥2}. (4.17)

Then, from Lemmas 3.1, 3.2 and the discrete Gronwall lemma, it follows

1

2
∥∂tθn∥2 + C0|||θn+ 1

2 |||2 + c∥θn+ 1
2 ∥2 ≤ C∆t

n∑
l=1

∥U l, 1
4 − ul, 1

4 ∥2L2(ΓN ). (4.18)

Furthermore, since there exist θn+1 = θn+ 1
2 + ∆t

2
∂tθ

n and θ
1
2 = 0, we achieve

∥θn+1∥ ≤ C∆t
n∑

l=1

∥∂tθl∥. (4.19)

Then, estimate (4.9) can be derived by equations (4.17)-(4.18).

Next, we turn to prove estimate (4.10) similarly. Subtracting equation (4.7) from equation (3.7),
we see ∀w ∈ V h

0

(∂2
t ζ

n, w) + (∇ζn, 1
4 ,∇w) + c(ζn, 1

4 , w)+ < ζnν⃗Γ,H
, [w] >Γ

+ < wν⃗Γ,H
, [ζn] >Γ +KH−1 < [ζn], [w] >Γ = < δζn, w >ΓN .

(4.20)

In equation (4.20), taking w = −δζn and similarly to the derivation of equation (4.9), we know

the left-hand side of equation (4.20) =
1

2∆t
{∥ζn−1∥2E1

− ∥ζn∥2E1
}, (4.21)

11
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and

| < δζn,−δζn >ΓN | ≤ C{∥∂tζn∥2 + ∥∂tζn−1∥2}. (4.22)

Thus, we get

1

2∆t
{∥ζn−1∥2E1

− ∥ζn∥2E1
} ≤ C

{
∥∂tζn−1∥2 + ∥∂tζn∥2}. (4.23)

For equation (4.23), multiplying both sides by 2∆t, summing time up to n, we obtain

∥ζn−1∥2E1
≤ ∥ζN∥2E1

+ C∆t

N∑
l=n

{
∥∂tζl∥2 + ∥∂tζl−1∥2

}
≤ ∥θN∥2 + C∆t

N∑
l=n

{
∥∂tζl∥2 + ∥∂tζl−1∥2}.

(4.24)

Then, from Lemmas 3.1, 3.2, the discrete Gronwall lemma and equation (4.9), it follows

1

2
∥∂tζn−1∥2 + C0|||ζn+ 1

2 |||2 + c∥ζn+ 1
2 ∥2 ≤ C∥u− U∥2l2(0,T ;L2(ΓN )). (4.25)

By ζn−1 = ζn− 1
2 − ∆t

2
∂tζ

n−1, it is easy to bound

∥ζn−1∥ ≤ ∥ζN∥+∆t

N∑
l=n

∥∂tζl∥ ≤ ∥θN∥+∆t

N∑
l=n

∥∂tζl∥. (4.26)

Then, estimate (4.10) follows from equations (4.25)-(4.26).

4.2 The error estimate of u− U

We turn to derive the error estimate of u− U bounded by p− P (u).

Lemma 4.4. Let {y, p, u} and {Y, P, U} be the solutions of the optimality system (2.2)-(2.4) and
the full discrete schemes (3.6)-(3.8), respectively. Assume u ∈ L2(0, T ;H1(ΓN )), p ∈ W , there
exists a positive constant C independent of hU such that

∥u− U∥2l2(0,T ;L2(ΓN )) ≤ Ch2
U + C∥p− P (u)∥2l2(0,T ;L2(Ω)). (4.27)
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Proof. By direct calculation, we have

α∥u− U∥2l2(0,T ;L2(ΓN )) = α∆t

N−1∑
n=1

∥un, 1
4 − Un, 1

4 ∥2L2(ΓN )

=

N−1∑
n=1

∆t < αun, 1
4 + pn, 1

4 , un, 1
4 − Un, 1

4 >ΓN +

N−1∑
n=1

∆t < αUn, 1
4 + Pn, 1

4 (u),

Un, 1
4 − un, 1

4 >ΓN +∆t

N−1∑
n=1

< Pn, 1
4 (u)− pn, 1

4 , un, 1
4 − Un, 1

4 >ΓN

≤ ∆t

N−1∑
n=1

< αUn, 1
4 + Pn, 1

4 (u), Un, 1
4 − un, 1

4 >ΓN

+∆t

N−1∑
n=1

< Pn, 1
4 (u)− pn, 1

4 , un, 1
4 − Un, 1

4 >ΓN

≤ ∆t

N−1∑
n=1

< αUn, 1
4 ,Πhu

n, 1
4 − un, 1

4 >ΓN +∆t

N−1∑
n=1

< pn, 1
4 ,Πhu

n, 1
4 − un, 1

4 >ΓN

+∆t

N−1∑
n=1

< pn, 1
4 − Pn, 1

4 (u), un, 1
4 −Πhu

n, 1
4 >ΓN +∆t

N−1∑
n=1

< Pn, 1
4 (u)−

Pn, 1
4 , un, 1

4 −Πhu
n, 1

4 >ΓN +∆t

N−1∑
n=1

< Pn, 1
4 (u)− Pn, 1

4 , Un, 1
4 − un, 1

4 >ΓN

+∆t

N−1∑
n=1

< Pn, 1
4 (u)− pn, 1

4 , un, 1
4 − Un, 1

4 >ΓN

Def.
=

6∑
i=1

Ii.

(4.28)

Now, we analyze the terms I1 to I6 one by one. By the definition of operator Πh in equation (4.4),
there holds

I1 = ∆t

N−1∑
n=1

< αUn, 1
4 ,Πhu

n, 1
4 − un, 1

4 >ΓN= 0. (4.29)

From Lemma 4.2, we know

I2 ≤ Ch2
U∆t

N∑
n=1

(∥pn, 1
4 ∥2H1(Ω) + ∥un, 1

4 ∥2H1(ΓN )) ≤ Ch2
U , (4.30)

and
I3 ≤ C∥p− P (u)∥2l2(0,T ;L2(Ω)) + Ch2

U . (4.31)

By Lemmas 4.2 and 4.3, we see

I4 ≤ ε∥U − u∥2l2(0,T ;L2(ΓN )) + Ch2
U , (4.32)

where ε is an arbitrary positive constant.

It is now to bound the term I5. In equation (4.11), we take v = ζn, 1
4 to obtain

(∂2
t θ

n, ζn, 1
4 ) + (∇θn, 1

4 ,∇ζn, 1
4 ) + c(θn, 1

4 , ζn, 1
4 )+ < θnν⃗Γ,H

, [ζn, 1
4 ] >Γ + < ζ

n, 1
4

ν⃗Γ,H
, [θn] >Γ

+KH−1 < [θn], [ζn, 1
4 ] >Γ=< Un, 1

4 − un, 1
4 , ζn, 1

4 >ΓN − < δθn, ζn, 1
4 >ΓN .

(4.33)
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By θ0 = θ1 = 0, ζN = θN , ∂tζ
N−1 = ∂tθ

N , sum time up to n and utilize the discrete Green formula
to have
(1)

∆t

N−1∑
n=1

(∂2
t θ

n, ζn, 1
4 ) = ∆t

N−1∑
n=1

(∂2
t ζ

n, θn, 1
4 ), (4.34)

(2)

N−1∑
n=1

∆t{< θnν⃗Γ,H
, [ζn, 1

4 ] >Γ + < ζ
n, 1

4
ν⃗Γ,H

, [θn] >Γ +KH−1 < [θn], [ζn, 1
4 ] >Γ}

=

N−1∑
n=1

∆t{< θ
n, 1

4
ν⃗Γ,H

, [ζn] >Γ + < ζnν⃗Γ,H
, [θn, 1

4 ] >Γ +KH−1 < [θn, 1
4 ], [ζn] >Γ}.

(4.35)

Hence, we find

I5 = −
N−1∑
n=1

∆t < ζn, 1
4 , Un, 1

4 − un, 1
4 >ΓN

= −
N−1∑
n=1

∆t{(∂2
t θ

n, ζn, 1
4 ) + (∇θn, 1

4 ,∇ζn, 1
4 ) + c(θn, 1

4 , ζn, 1
4 )+ < θnν⃗Γ,H

, [ζn, 1
4 ] >Γ

+ < ζ
n, 1

4
ν⃗Γ,H

, [θn] >Γ +KH−1 < [θn], [ζn, 1
4 ] >Γ + < δθn, ζn, 1

4 >ΓN }

= −
N−1∑
n=1

{
(∂2

t ζ
n, θn, 1

4 ) + (∇ζn, 1
4 ,∇θn, 1

4 ) + c(ζn, 1
4 , θn, 1

4 )+ < ζnν⃗Γ,H
, [θn, 1

4 ] >Γ

+ < θ
n, 1

4
ν⃗Γ,H

, [ζn] >Γ +KH−1 < [ζn], [θn, 1
4 ] >Γ + < δθn, ζn, 1

4 >ΓN

}
= −

N−1∑
n=1

∆t{< δζn, θn, 1
4 >ΓN + < δθn, ζn, 1

4 >ΓN }

= − < ζN− 1
2 , θN− 1

2 >ΓN

≤ 0.

(4.36)

It is easy to bound the last term as

I6 ≤ C∥P (u)− p∥2l2(0,T ;L2(Ω)) + ε∥u− U∥2l2(0,T ;L2(ΓN )). (4.37)

By estimates (4.28)-(4.37), taking ε ≤ α

4
, we derive

∥u− U∥2l2(0,T ;L2(ΓN )) ≤ Ch2
U + C∥p− P (u)∥2l2(0,T ;L2(Ω)). (4.38)

Then, the proof of Lemma 4.4 is completed.

4.3 The error estimates of y − Y (u) and p− P (u)

We adopt the standard elliptic projection w̃ ∈ V h of w ∈ V

(∇(w − w̃),∇v) + c(w − w̃, v) = 0, ∀ v ∈ V h. (4.39)

By [33][34][35][36], we know that
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Lemma 4.5. For elliptic projection (4.39), there exists the following L∞-norm error estimate

∥w − w̃∥L∞(Ω) + ∥(w − w̃)t∥L∞(Ω) + ∥(w − w̃)tt∥L∞(Ω)

≤ Ch2| lnh|{∥w∥W2,∞(Ω) + ∥wt∥W2,∞(Ω) + ∥wtt∥W2,∞(Ω)}.
(4.40)

As we have shown, the full discrete schemes (3.6) and (3.8) include two special terms on the inter-
domain boundary Γ by integral mean method to present explicit flux calculation. The standard
elliptic projection (4.39) is insufficient for deriving optimal error estimates. To get optimal error
estimates, a new elliptic projection which includes the terms of inter-domain boundary was introduced
in [20]. This new elliptic projection wI ∈ V h of the solution w ∈ V is defined as follows: ∀ v ∈ V h

0

(∇(w − wI),∇v) + c(w − wI , v)+ < (w − wI)ν⃗Γ,H
, [v] >Γ

+ < vν⃗Γ,H
, [w − wI ] >Γ +KH−1 < [w − wI ], [v] >Γ= 0.

(4.41)

Lemma 4.6. [20] For w − wI , there exists error estimate

∥w − wI∥ ≤ C{h2 +H1/2∥w − w̃∥L∞},

∥(w − wI)t∥ ≤ C{h2 +H1/2∥(w − w̃)t∥L∞},

∥(w − wI)tt∥ ≤ C{h2 +H1/2∥(w − w̃)tt∥L∞},

∥∇(w − wI)tt∥ ≤ C{h+H1/2∥∇(w − w̃)tt∥L∞},

(4.42)

where w̃ is the elliptic projection defined by equation (4.39).

Lemma 4.7. Let {y, p}, {Y (u), P (u)} be the solutions of the optimality system (2.2)-(2.4) and
auxiliary problem (4.6)-(4.7), respectively. Supposing that y, p ∈ L2(0, T ;H1(Ω)) ∩ H2(0, T ;L2(Ω))

and H = O(h
4
5 ), there exists a positive constant C independent of h, H and ∆t such that

max
1≤n≤N

∥∂tηn∥+ max
1≤n≤N

∥ηn∥ ≤ C{(∆t)2 + h2 +H5/2}, (4.43)

max
1≤n≤N

∥∂tξn∥+ max
1≤n≤N

∥ξn∥ ≤ C{(∆t)2 + h2 +H5/2}, (4.44)

provided that ∆t ≤ C1H, where constant C1 is defined by Lemma 3.2.

Proof. Part 1. By equation (2.2), we have the weak formulation ∀ v ∈ V h
0

(∂2
t y

n, v) + (∇yn, 1
4 ,∇v) + c(yn, 1

4 , v)+ < y
n, 1

4
ν⃗Γ

, [v] >Γ

= (fn, 1
4 , v)+ < un, 1

4 − ∂ty
n, 1

4 , v >ΓN +(∂2
t y

n − ∂2yn, 1
4

∂t2
, v),

(4.45)

where

∥∂2
t y

n − ∂2yn, 1
4

∂t2
∥2 ≤ (∆t)3

∫ tn+1

tn−1

∥∂
4y

∂t4
∥dt ≤ C(∆t)3 (4.46)

follows [37].

Let yI ∈ V h is the elliptic projection of y by equation (4.41). Define β = y − yI , ρ = Y (u) − yI .
Combining equations (4.41) and (4.45) together, we know

(∂2
t y

n
I , v) + (∇yn, 1

4
I ,∇v) + c(y

n, 1
4

I , v)+ < ynI,ν⃗Γ,H , [v] >Γ

+ < vν⃗Γ,H
, [ynI ] >Γ +KH−1 < [ynI ], [v] >Γ

= (fn, 1
4 , v)+ < un, 1

4 , v >ΓN + < δyn − ∂ty
n, 1

4 >ΓN +(∂2
t y

n − ∂2yn, 1
4

∂t2
, v)

+ < ynν⃗Γ,H
− ynν⃗Γ , [v] >Γ + < ynν⃗Γ − y

n, 1
4

ν⃗Γ
, [v] >Γ − < δβn, v >ΓN

−(∇(βn, 1
4 − βn),∇v)− (∂2

t β
n, v)− c(βn, 1

4 , v)− < δynI , v >ΓN .

(4.47)
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Subtracting equation (4.47) from equations (4.6), we obtain

(∂2
t ρ

n, v) + (∇ρn, 1
4 ,∇v) + c(ρn, 1

4 , v)+ < ρnν⃗Γ,H
, [v] >Γ

+ < vν⃗Γ,H
, [ρn] >Γ +KH−1 < [ρn], [v] >Γ

= (∇(βn, 1
4 − βn),∇v) + c(βn, 1

4 , v)− < ynν⃗Γ,H
− ynν⃗Γ,H

, [v] >Γ

− < ynν⃗Γ,H
− y

n, 1
4

ν⃗Γ
, [v] >Γ +(∂2

t β
n, v)− (∂2

t y
n − ∂2yn

∂t2
, v)

+ < δβn, v >ΓN − < δyn − ∂ty
n, 1

4 >ΓN − < δρn, v >ΓN .

(4.48)

Taking v = δρn in equation (4.48), we analyze the terms one by one. Similarly to the derivation of
equation (4.14), it follows

the left-hand side of equation (4.48) =
1

2∆t
{∥ρn∥2E1

− ∥ρn−1∥2E1
}. (4.49)

It is easy to see that the following estimates exist

|(∇(βn, 1
4 − βn),∇δρn)| ≤ ε{∥∇ρn+ 1

2 ∥2 + ∥∇ρn− 1
2 ∥2}+ C(∆t)2∥∇∂2

t β
n∥2,

|c(βn, 1
4 , δρn)| ≤ C{∥∂tρn∥2 + ∥∂tρn−1∥2}+ C{∥βn+ 1

2 ∥2 + ∥βn− 1
2 ∥2},

| < δβn, δρn >ΓN | ≤ C{∥∂tρn∥2 + ∥∂tρn−1∥2}+ C{∥∂tβn∥2 + ∥∂tβn−1∥2},

| < δρn, δρn >ΓN | ≤ C{∥∂tρn∥2 + ∥∂tρn−1∥2},

|(∂2
t β

n, δρn)| ≤ ε

2
{∥∂tρn∥2 + ∥∂tρn−1∥2}+ C∥∂2

t β
n∥2,

|(∂2
t y

n − ∂2yn, 1
4

∂t2
, δρn)| ≤ ε

2
{∥∂tρn∥2 + ∥∂tρn−1∥2}+ C(∆t)3,

(4.50)

and

| < y
n, 1

4
ν⃗Γ

− ynν⃗Γ , [δρ
n] >Γ |

≤ 1

2∆t

{µ
2
KH−1{∥[ρn+ 1

2 ]∥2L2(Γ) + ∥[ρn− 1
2 ]∥2L2(Γ)}+ CH5∥ytt(t̃)∥2H2(Ω)

}
,

(4.51)

where, t̃ ∈ (tn−1, tn+1), arbitrary constants ε > 0 and 0 < µ < 1.

Noticing that there exists

|∂y
n, 1

4

∂t
− δyn| = |1

4

∫ ∆t

−∆t

(∆t− |τ |) |τ |
∆t

∂3y

∂t3
(tn + τ)dτ | ≤ C(∆t)3. (4.52)

Then, we know

| < ∂yn, 1
4

∂t
− δyn, δρn >ΓN | ≤ C{∥∂tρn∥2 + ∥∂tρn−1∥2}+ C(∆t)3. (4.53)

From Lemma 4.1, we also know

| < ynν⃗Γ,H
− ynν⃗Γ , [δρ

n] >Γ |

≤ 1

2∆t

{
CH5∥ynν⃗Γ∥

2
W2,∞(Ω) +

µ

2
KH−1{∥[ρn+ 1

2 ]∥2L2(Γ) + ∥[ρn− 1
2 ]∥2L2(Γ)}

}
.

(4.54)
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Collecting the above analysis together, and noticing 0 < µ < 1, we find

(1− µ)∥ρn∥2E1
− (1 + µ)∥ρn−1∥2E1

≤ C∆t{∥∇ρn+ 1
2 ∥2 + ∥∇ρn− 1

2 ∥2 + ∥∂tρn∥2 + ∥∂tρn−1∥2}

+C∆t{(∆t)3 + ∥∂2
t β

n∥2 + (∆t)2∥∇∂2
t β

n∥2 + ∥βn+ 1
2 ∥2 + ∥βn− 1

2 ∥2

+∥∂tβn∥2 + ∥∂tβn−1∥2}+ CH5.

(4.55)

Define λ = 1−µ
1+µ

. Then, we see 0 < λ < 1. Multiplying both sides of equation (4.55) by λn−1

1+µ
, we

have

λn∥ρn∥2E1
− λn−1∥ρn−1∥2E1

≤ C∆t{∥∇ρn+ 1
2 ∥2 + ∥∇ρn− 1

2 ∥2 + ∥∂tρn∥2 + ∥∂tρn−1∥2}

+C∆t{(∆t)3 + ∥∂2
t β

n∥2 + (∆t)2∥∇∂2
t β

n∥2 + ∥βn+ 1
2 ∥2 + ∥βn− 1

2 ∥2

+∥∂tβn∥2 + ∥∂tβn−1∥2}+ CH5.

(4.56)

Summing time up to n, we obtain

λn∥ρn∥2E1
≤ 2C∆t

λn−1

1 + µ

n∑
l=1

{
∥∇ρl+

1
2 ∥2 + ∥∇ρl−

1
2 ∥2 + ∥∂tρl∥2 + ∥ρl−1∥2

}
+C∆t

n∑
l=1

{
(∆t)3 + ∥∂2

t β
l∥2 + (∆t)2∥∇∂2

t β
l∥2 + ∥βl+ 1

2 ∥2

+∥βl− 1
2 ∥2 + ∥∂tβl∥2 + ∥∂tβl−1∥2

}
+ CH5.

(4.57)

Choosing µ = 1
1+N

, we know λ−n = (1 + 2
N
)n < e2. By the discrete Gronwall lemma, Lemmas 3.1

and 3.2, there holds

1

2
∥∂tρn∥2 + C0|||ρn|||2 + c∥ρn+ 1

2 ∥2

≤ C∆t
n∑

l=1

{(∆t)3 + ∥∂2
t β

l∥2 + (∆t)2∥∇∂2
t β

l∥2 + ∥βl+ 1
2 ∥2 + ∥βl− 1

2 ∥2

+∥∂tβl∥2 + ∥∂tβl−1∥2}+ CH5.

(4.58)

Using the equality ∂2
t β

l = (∆t)−2

∫ ∆t

−∆t

(∆t− |τ |)∂
2β

∂t2
(tl + τ)dτ ([37]), we derive


∆t

n∑
l=1

∥∂2
t β

l∥2 ≤ C∥∂
2β

∂t2
∥2L2(0,T ;L2(Ω)),

∆t

n∑
l=1

∥∇∂2
t β

l∥2 ≤ C∥∂
2β

∂t2
∥2L2(0,T ;H1(Ω)).

(4.59)

By the equality ρn+1 = ρn+ 1
2 + ∆t

2
∂tρ

n and ρ
1
2 = 0, there exists

∥ρn+1∥ ≤ ∆t

n∑
l=1

∥∂tρl∥. (4.60)
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Putting equations (4.58)-(4.60) together and using Lemma 4.6, we can obtain estimate (4.43).

Part 2. This next step is to estimate the error between p and P (u). The weak formulation of
equation (2.3) is ∀w ∈ V h

0

(∂2
t p

n, w) + (∇pn, 1
4 ,∇w) + c(pn, 1

4 , w)+ < p
n, 1

4
ν⃗Γ

, [w] >Γ = < dtp
n, 1

4 , w >ΓN +(∂2
t p

n − ∂2pn, 1
4

∂t2
, w),

(4.61)

where ∥∂2
t p

n − ∂2pn, 1
4

∂t2
∥2 ≤ C(∆t)3.

Define the elliptic projection pI of p by equation (4.41). Let φ = p − pI , ψ = P (u) − pI . There
exists

(∂2
t p

n
I , w) + (∇pn, 1

4
I ,∇w) + c(pn, 1

4 , w)

+ < pnI,ν⃗Γ,H , [w] >Γ + < wν⃗Γ,H , [p
n
I ] >Γ +KH−1 < [pnI ], [w] >Γ

= < dtp
n, 1

4 − δpn, w >ΓN +(∂2
t p

n − ∂2pn, 1
4

∂t2
, w)− < p

n, 1
4

ν⃗ − pnν⃗ , [w] >Γ

+ < pnν⃗,H − pnν⃗Γ , [w] >Γ −(∂2
t φ

n, w)− (∇(φn, 1
4 − φn),∇w)

−c(φn, 1
4 , w)+ < δφn, w >ΓN + < δpnI , w >ΓN .

(4.62)

Subtracting equation (4.62) from equation (4.7), we have

(∂2
t ψ

n, w) + (∇ψn, 1
4 ,∇w) + c(ψn, 1

4 , w)

+ < ψn
ν⃗Γ,H

, [w] >Γ + < wν⃗Γ,H
, [ψn] >Γ +KH−1 < [ψn], [w] >Γ

= < δpn − dpn, 1
4

dt
, w >ΓN −(∂2

t p
n − ∂2pn, 1

4

∂t2
, w)+ < p

n, 1
4

ν⃗Γ,H
− pnν⃗Γ , [w] >Γ

− < pnν⃗Γ,H
− pnν⃗Γ , [w] >Γ +(∂2

t φ
n, w) + (∇(φn, 1

4 − φn),∇w)

− < δφn, w >ΓN + < δψn, w >Γ +c(φn, 1
4 , w)+ <

dpn, 1
4

dt
− dtp

n, 1
4 , w >ΓN .

(4.63)

Taking w = −δψn in equation (4.63), similarly to the derivation of equation (4.14), we have

the left-hand side of equation (4.63) =
1

2∆t
{∥ψn−1∥2E1

− ∥ψn∥2E1
}. (4.64)

We analyze the terms on the right-hand side of equation (4.63) one by one to obtain

|c(φn, 1
4 ,−δψn)| ≤ C{∥∂tψn∥2 + ∥∂tψn−1∥2}+ C{∥φn+ 1

2 ∥2 + ∥φn− 1
2 ∥2}, (4.65)

| < δφn,−δψn >ΓN | ≤ C{∥∂tφn∥2 + ∥∂tφn−1∥2}+ C{∥∂tψn∥2 + ∥∂tψn−1∥2}, (4.66)

| < δψn,−δψn >ΓN | ≤ C{∥∂tψn∥2 + ∥∂tψn−1∥2}, (4.67)

| < dpn, 1
4

dt
− dtp

n, 1
4 ,−δψn >ΓN | ≤ C{∥∂tψn∥2 + ∥∂tψn−1∥2}, (4.68)

| < δpn − pn, 1
4

dt
,−δψn >Γ | ≤ C(∆t)3 + C{∥∂tψn∥2 + ∥∂tψn−1∥2} (4.69)
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from equation (4.53).

Combining the above analysis, and by the same argument to derive equation (4.57), we see

λn∥ψn−1∥2E1
≤ C∥ρN∥2E1

+ C∆t

N∑
l=n

{∥∂tψl∥2 + ∥∂tψl−1∥2 + ∥∇ψl− 1
2 ∥2 + ∥∇ψl+ 1

2 ∥2}

+C∆t
N∑

l=n

{(∆t)3 + ∥∂2
t φ

l∥2 + (∆t)2∥∇∂2
t φ

l∥2 + ∥φl+ 1
2 ∥2 + ∥φl− 1

2 ∥2

+∥∂tφl∥2 + ∥∂tφl−1∥2}+ CH5.

(4.70)

Similarly to Part 1, by the discrete Gronwall lemma and Lemmas 3.1 and 3.2, we obtain

1

2
∥∂tψn−1∥2 + C0|||ψn+ 1

2 |||2 + c∥ψn+ 1
2 ∥2

≤ C∥ρN∥2E1
+ C∆t

N∑
l=n

{(∆t)3 + ∥∂2
t φ

l∥2 + (∆t)2∥∇∂2
t φ

l∥2

+∥φl+ 1
2 ∥2 + ∥φl− 1

2 ∥2 + ∥∂tφl∥2 + ∥∂tφl−1∥2}+ CH5.

(4.71)

Hence, similarly to prove Lemma 3.2 and equation (4.43), we finally prove estimate (4.44) exist.

By the results of Lemmas 4.3, 4.4 and 4.7, we obtain the following error theorem.

Theorem 4.8. Let {y, p, u}, {Y, P, U} be the solutions of the optimality system (2.2)-(2.4) and the
full discrete schemes (3.6)-(3.8), respectively. Assuming that the conditions in Lemmas 4.3, 4.4 and
4.7 be held, there exists a positive constant C independent of h, hU and ∆t such that

max
1≤n≤N

∥∂t(y − Y )n∥+ max
1≤n≤N

∥yn − Y n∥ ≤ C{hU + h2 +H5/2 + (∆t)2}, (4.72)

max
1≤n≤N

∥∂t(p− P )n∥+ max
1≤n≤N

∥pn − Pn∥ ≤ C{hU + h2 +H5/2 + (∆t)2}, (4.73)

provided that ∆t ≤ C1H, where constant C1 is defined by Lemma 3.2.

Remark 4.1. From Theorem 4.8, we can know that the full discrete schemes (3.6)-(3.8) have
convergence orders on ∆t, h and H as same as that of [24]. Since the schemes use implicit Galerkin
methods in the sub-domains and explicit flux calculations on the inter-domain boundary Γ by an
integral mean method. The time step constraint ∆t ≤ C1H in Lemma 3.2 is still needed to preserve
stability, which is similar to that of reference work [37].

5 Conclusions

We have presented a non-overlapping DDM to solve optimal boundary control problems governed
by wave equations with absorbing boundary condition. An integral mean method is utilized to
present an explicit flux calculation on the inter-domain boundary in order to communicate the local
problems on the interfaces between subdomains, which helps to compute the local problems on each
subdomain fully parallel. We establish the full discrete schemes for solving these local problems,
and prove the stability of the schemes. In Theorem 4.8, a priori error estimates are derived for the
state, co-state and control variables that show the full discrete schemes (3.6)-(3.8) have convergence
orders on ∆t, h and H as same as that of [24].
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