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ABSTRACT 
 

This paper is focused on the construction and implementation of implicit one-step hybrid block 
methods for the solution of stiff ordinary differential equation. The research further investigates the 
basic properties of implicit one-step block hybrid method. We noticed that the moment the value of 

an error constant is positive, the order P  is odd. And when the value of an error constant is 

negative then the orderP is of even number and the block hybrid method with three off-grid point is 
of uniform order. The performance of the methods was demonstrated on some stiff initial value 
problems (IVPs). The result revealed that the hybrid block methods are efficient, accurate and 
convergent on some stiff ordinary differential equations. 
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1. INTRODUCTION 
 
The general linear methods were introduced to 
provide a unifying frame work to study 
consistency, stability and convergence of the 
traditional methods. More recently, the use 
hybrid block methods which computes 
successfully with others like Rang-Kutta and 
linear multi-step methods, see [1,2,3]. This 
methods was high order becomes very difficult to 
drive using inversion algorithm, and another 
approach has been sought using Maple and 
Matlab software program. 
 
This paper has been classified into sections. In 
section 2.0 the MC procedure is constructed 
involving multiple off-grid collocation points and 
we analyze on its convergence analysis obtain in 
a block form. We obtain the order and error 
constants in a block form in section 3.1, the 
stability regions are also plotted in section 3.2 a, 
section 3.3 is the numerical implementation of 
the block hybrid schemes on stiff (ODEs) and 
conclusion is given in section 4.0. We consider 
the numerical solution of first order initial value 
problems of the form: 
 

00 )(),,( yxyyxfy         (1.1) 

 
where �  is continuous and satisfies Lipchitz’s 
condition that guarantees the uniqueness and 
existence of a solution.  
 

2. CONSTRUCTIONS OF THE METHODS 
 

2.1 Derivation Techniques of MC [1,3,4,5] 
 
Consider the collocation methods defined for the 

step |,| 1nn xx by 
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where t denotes the number of interpolation 

points ,1,,0,  tjx jn  and m denotes the 

number of distinct collocation points 

  1,,1,0,,   mjxxx knnj  the points 

jx  are chosen from the step jnx   as well as 

one or more off-step points. 
 

The following assumptions are made; 
 

1. Although the step size can be variable, for 
simplicity in our presentation of the 
analysis in this paper, we assume                     

it is constant 
h

ab
Nxxh nn


  ,1  

with the steps given by 

 ,,,1,0,/ Nnnhaxx nn   

2. That (1.1) has a unique solution and the 

coefficients )(),( xx jj  in (2.1) can be 

represented by polynomial of the form  
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(2.3) 

 

with constant coefficients 1,1, ,  ijij h and 

collocation conditions  
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with these assumptions we obtained an MC 
polynomial in the form 
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and also we get D Matrix as follows:  
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The parameters required for equation (2.7) to 
obtain one-step block hybrid methods with three 

off-grid points are :4,1,1  kmtk

 1,,,
4
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xxxxx

 
 

Using the maple software program and 
evaluating (2.7) at the grid-points,
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xxxxx  we get four members 

schemes. Hence, the hybrid block methods are 
as follows: 
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The parameters required for equation (2.7) to obtain one-step block hybrid method with four off- grid 
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By using the maple software program and evaluating (2.7) at the grid- points 
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we get the five members schemes as follows: 
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2.2 Stability of Block Method 
 

The equations (2.8) when put together formed the block as 
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The characteristic polynomial of the hybrid bock method (2.7) and (2.10) is given as 
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Since   

 

    1,0,0,01

0

1000

100

100

100

det

1000

1000

1000

1000

1000

0100

0010

0001

det

4321 

































































































RRRRRRRR

R

R

R

R

RR

 

 
Also, the hybrid block method with four off-grid points, the equations (2.8) when put together formed 
the block as 
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(2.11)

  
The characteristic of polynomial of the hybrid block method (2.8) and (2.11) is given as 
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3. CONVERGENCE ANALYSIS
 

 
3.1 Order and Error Constants of the 

Hybrid Block Methods 
 
The hybrid block methods which are obtained in 
a block form with the help of maple software 

have the following order and error constants for 
each block hybrid method. 
 

The method 1k  with three off-grid points is of 
mixed order 5 and 6 and has error constants 
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The method 1k  with four off-grid points is of 
uniform order 6 and has error constants 
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In this case, we noticed that the moment the 
value of an error constant is positive, the orderP  
is odd. And when the value of an error constant 

is negative then the orderP  is of even number. 
 

3.2 Regions of Absolute Stability
 

 

Using the MATLAB package, we were able to 
plot the stability regions of the block method (see 
Figs. 1 and 2). This is done by reformulating the 
block method as general linear method to obtain 
the values of the matrices according to [6,7]. 
These matrices are substituted into the stability 
matrix and using MATLAB software, the absolute 
stability regions of the new methods are plotted 
as shown in Figs. 1 and 2. 

 
 

Fig. 1. Stability region of the block hybrid method for k=1 with three off-grid points 
 

 

 

Fig. 2. Stability region of the block hybrid method for k=1 with four off-grid points 
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3.3 Numerical Implementation 
 

To study the efficiency of the block hybrid method for 1k , we present some numerical examples 
widely used by several authors such as [3,8]. 
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Table 1. Absolute error for experiment 1 

 

Y stableA  hybrid block with three off- 
grid points 

  stable0  hybrid block with four off- 

grid points 
0.1 11067.9   

21092.9   

0.2 11036.9   
31084.9   

0.3 11005.9   
41077.9   

0.4 11075.8   
51069.9   

0.5 11085.8   
61062.9   

0.6 11019.8   
71054.9   

0.7 11092.7   
81047.9   

0.8 11066.7   
91039.9   

 

Table 2. Absolute error for experiment 2 
 

Y stableA  hybrid block with three off-  
                         grid points 

  stable0  hybrid block with four off-  

                         grid points 

1y  2y  3y  1y  2y  3y  

0.1 21098.2   21098.2   
21006.1   

21023.2   
21023.2   

21053.2   

0.2 41038.7   
41003.4   

41068.1   
41006.1   

51014.9   
41068.1   

0.3 51028.1   
51028.1   

51076.3   
61023.8   

61010.9   
51033.1   

0.4 81008.8   
81022.8   

71087.9   
61060.9   

61030.9   
71060.1   

0.5 91010.9   
91030.8   

81081.2   
61067.9   

61067.9   
91068.1   

0.6 101000.2   
91010.1   

101042.4   
61050.9   

61050.9   
111012.9   

0.7 101000.4   
101000.6   

111098.6   
61008.9   

61008.9   
101005.1   

0.8 101000.3   
101000.5   

111099.9   
61049.8   

61049.8   
111084.6   



 
 
 
 

Skwame et al.; JSRR, 16(1): 1-7, 2017; Article no.JSRR.36187 
 
 

 
7 
 

It is obvious from the results presented in   
Tables 1 and 2 that the four off-grid performs 
better than the methods with three off-grid   
points. 

 

4. CONCLUSIONS 
 
It is evident from Tables 1 and 2 that our 
proposed methods are indeed accurate, and can 
handle stiff equations. Also in terms of stability 
analysis, the methods, with three off-grid point is 

stableA and that with four off-grid points is 

  stable0 . Comparing the two schemes 

derived, the   stable0 hybrid methods 

performs better than the stableA  hybrid 
methods, in view of the results presented in the 
Tables 1 and 2. 
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