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ABSTRACT

This paper is focused on the construction and implementation of implicit one-step hybrid block
methods for the solution of stiff ordinary differential equation. The research further investigates the
basic properties of implicit one-step block hybrid method. We noticed that the moment the value of
an error constant is positive, the order P is odd. And when the value of an error constant is
negative then the order Pis of even number and the block hybrid method with three off-grid point is
of uniform order. The performance of the methods was demonstrated on some stiff initial value

problems (IVPs). The result revealed that the hybrid block methods are efficient, accurate and
convergent on some stiff ordinary differential equations.
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1. INTRODUCTION

The general linear methods were introduced to
provide a unifying frame work to study
consistency, stability and convergence of the
traditional methods. More recently, the use
hybrid block methods which computes
successfully with others like Rang-Kutta and
linear multi-step methods, see [1,2,3]. This
methods was high order becomes very difficult to
drive using inversion algorithm, and another
approach has been sought using Maple and
Matlab software program.

This paper has been classified into sections. In
section 2.0 the MC procedure is constructed
involving multiple off-grid collocation points and
we analyze on its convergence analysis obtain in
a block form. We obtain the order and error
constants in a block form in section 3.1, the
stability regions are also plotted in section 3.2 a,
section 3.3 is the numerical implementation of
the block hybrid schemes on stiff (ODEs) and
conclusion is given in section 4.0. We consider
the numerical solution of first order initial value
problems of the form:

V' =F(x60),9(x,) =¥, (-

where f is continuous and satisfies Lipchitz's
condition that guarantees the uniqueness and
existence of a solution.

2. CONSTRUCTIONS OF THE METHODS
2.1 Derivation Techniques of MC [1,3,4,5]

Consider the collocation methods defined for the
Step | xn 9xn+l |by

ﬂﬂ=ZMﬁnHH§ﬁmwﬂ%J&J
(2.1)

where t denotes the number of interpolation
pointsxn+j,j=0,---,l—l, and m denotes the

number of  distinct  collocation points

)_c/.e[xn,xmk], j=0lL---,m—1 the points

x; are chosen from the step x,, . as well as

J
one or more off-step points.
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The following assumptions are made;

1. Although the step size can be variable, for
simplicity in our presentation of the
analysis in this paper, we assume

b—a

no N:

h
with the steps given by
{xn/xn =a+nh,n:0,l,-~-,N},

2. That (1.1) has a unique solution and the
coefficients & (x), B,(x)in (2.1) can be

it is constant h=x

- X

n+l

represented by polynomial of the form

t+m—1

GI,’J-(X)Z zajiﬂx[a jg(oalaza'“at_l)

J=0

(2.2)

t+m-1

hﬂf(x) =h Zﬂf,iﬂxi’ j8(0,1,2,~~,m—1) (23)

with ~constant ~coefficients «,,,,,hf,,,, and
collocation conditions

y(x;1+j)=yn+j3 jg{(),l,"',t—l} (2.4)

Y ()= G (), jel0l-m—1}(25)

with these assumptions we obtained an MC
polynomial in the form

t+m-1 -1 m=1

y(x)= z a;/xia a; = C1+1,_/+1 + z Ci+1,j+1 ntj
=0 =0 =0
(2.6)

and also we get D Matrix as follows:

2 t+m-1
1 X, X, e X,
2 t+m-1
1 xn+1 xn+2 o n
2 t+m—1
1 xn+t—l xn+t—l o xn-H—l
Q = — —t+M -2
0 1 2Xx0 (t+m—1)xo
- —t+M-2
0 1 2x0 (t+m—1)x;
- —t+M-2
O 1 zxm—l (t +m— 1)xmfl

2.7)
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The parameters required for equation (2.7) to Using the maple software program and
obtain one-step block hybrid methods with three  evaluating (2.7) at the grid-points,

off-grid points are k=lLt=l,m=k+4: x= s X 15X s, X, [ we get four members
4 2 4
X= ixn%,xn%,xm%,xm} schemes. Hence, the hybrid block methods are
as follows:
Voyir =V, t ﬁh[ZSI [, + 646 f,Hl, - 264 f“l, + 106 f,H; -19 f,..]

Y o=y, - h[29 f, + 124 f, ‘L +24 f +4f - foal

Voo = Va T3 R[9S, +34 f,  +24 f +14 f = f,.]
yn+l = yn + #h[7fn + 32’ fn+L+ 12 fn+L+ 32 f,1+l+ 7fn+l] (28)

The parameters required for equation (2.7) to obtain one-step block hybrid method with four off- grid
pointsare k=1, t=1,m=k+5:x= X, 15X, 15X, 3,x ux

no n+%’ n+y n+l

By wusing the maple software program and evaluating (2.7) at the grid- points
xzix X 15X 15X 5,X 7,x we get the five members schemes as follows:

n? n+% n+52 "ty n+l
Voo = Vot Toos0 o [811 f, + 2639 f — 1869 f,,+L + 2261 fn+; —-1728 fn+l+406 Lol
Vosr = Vot - h[193 f, +924 f  +28 f . +308 f . —256 f .+63f,]
y 3=y, +tmh[29 f, +133 f L+ 49 f,,+1,+119 f,,+;_64 f,,+1+14 Sl

ey g 2 ) §

V.1 = Vot wmig h[1021 f, + 4704 f L + 1666 f ot 5096 f — 1408 f . +441 f, ]

Vosr = Vo T h[7f, +32 fnh',* + 12 f“% + 32 fﬂ% +7f,.:]

(2.9)
2.2 Stability of Block Method

The equations (2.8) when put together formed the block as

100 0| oo o 1 o s e el To 0 0 220 e
0100yn+%=0001y"+%+h%%5$;—6‘0f,,%JrOOO%f"*%

0.0 10|y []000 15, Wow m w000 &/
R P B RO I I /A R LR ) e

The characteristic polynomial of the hybrid bock method (2.7) and (2.10) is given as

p(R)= det [RA0 fAll where A° =

0

0 1
and A =

1

0

oS o o =
o o~ <
- o O O
[= - -
[= - -
[= - - =
—_ = e
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0 -1
0 -1
R -1
0 R-1

p(R)=det|R

0
0
=0
1
0

S O o O

1
1
= det
1
1

o o o X

0
R
0
0

o o o =

0
1
0
_ 0
Since
=

= R(R(R(R - 1))

Also, the hybrid block method with four off-grid points, the equations (2.8) when put together formed
the block as

R, =

Y M3 __f# ~ _
100000000 1% | [ = 5 52 || [0 0 otiol| o
01000[%:] 0000 1||%| |4 & 2 32 LI sl |0 0 22 /.2
00 100|ly.[=00001y.+hd 2 & 510 0 %5 ||
()0010)/%7 00001)/%1 t T S 0 0 Fieo S
00001 ™[ foooo ™ |k 2 1o 2| o 02 | (2.11)

| Yo L 45 15 45 90__]2“_ L 9 an

The characteristic of polynomial of the hybrid block method (2.8) and (2.11) is given as

p(R)=det|RA" — 4']

10000 [0 0 0 0 1]
01000 000 0 1
where 0 _1o 0 1 0 o|@d 4-{o 0 0 0 1
00010 000 01
000 0 1] 000 0 1
'R 0 0 0 —1 ]
0 R O 0 -1
Hence, det{ 0 0 R 0 -1 |=0
000 R -1
00 0 0 R-1
= R(R(R(R(R-1))))=0

which impliesR, =0, R, =0, R, =0, R, =0, R, =1.

|Rj|£1, je {1, 2,3,4,5} hence the method as a blockis zero stable on its ownand

the hybrid block method is also consistant as order p>1

3. CONVERGENCE ANALYSIS have the following order and error constants for
each block hybrid method.

3.1 Order and Error Constants of the
Hybrid Block Methods The method k =1 with three off-grid points is of
mixed order 5 and 6 and has error constants

The hybrid block methods which are obtained in C :[ 3 1 3 1 O]T
a block form with the help of maple software 5,6 6553607 368640° 655360° 193536
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The method k =1 with four off-grid points is of 3.2 Regions of Absolute Stability

uniform order 6 and has error constants Using the MATLAB package, we were able to

C, = Touitnciv »— TR0 »— T3iom30» plot the stability regions of the block method (see
145 - Figs. 1 and 2). This is done by reformulating the
T 9059696640 > 1935360] block method as general linear method to obtain

the values of the matrices according to [6,7].
In this case, we noticed that the moment the These matrices are substituted into the stability
value of an error constant is positive, the order P matrix and using MATLAB software, the absolute
is odd. And when the value of an error constant stability regions of the new methods are plotted

is negative then the order P is of even number. as shown in Figs. 1 and 2.
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Fig. 1. Stability region of the block hybrid method for k=7 with three off-grid points
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Fig. 2. Stability region of the block hybrid method for k=17 with four off-grid points

5



Skwame et al.; JSRR, 16(1): 1-7, 2017; Article no.JSRR.36187

3.3 Numerical Implementation

To study the efficiency of the block hybrid method for £ =1, we present some numerical examples
widely used by several authors such as [3,8].

Experiment1  y' =—10000y, where h=0.1, x€[0,0.8]
y(x) 26710000)(

Experiment 2

-21 19  -20 1
y' =119 -21 20 |y, y(@)=|0 |, 0<x>0.8, h=0.1
40— 40 - 40 -1

o2 4 o (coS (40x)+ sin (40x))

y(x)= % e —e " (cos(40x)+sin (40x))
2¢ " (sin (40x) - cos (40x))
Table 1. Absolute error for experiment 1
Y A—stable hybrid block with three off-  o(0)—stable hybrid block with four off-
grid points grid points
0.1 9.67x10™" 9.92x1072
0.2 9.36x107" 9.84x10°
0.3 9.05x107" 9.77x10™*
04 8.75x10~" 9.69x107
0.5 8.85x10™" 9.62x107°
0.6 8.19x10™" 9.54x10”
0.7 7.92x107"! 9.47x10°
0.8 7.66x10" 9.39x10™
Table 2. Absolute error for experiment 2
Y A—stable hybrid block with three off- (0)—stable hybrid block with four off-
grid points grid points
Y1 ) Y Y Y Y3
0.1 298x107 2.98x107  1.06x107  223x107  2.23x102  2.53x107
02 738x10™*  4.03x10*  1.68x10™*  1.06x10*  9.14x10”°  1.68x10~*
03 1.28x107° 1.28x107° 3.76x107°  823x10°  9.10x10°  1.33x10°°
04 808x107* 8.22x10°*  9.87x107  9.60x10°  9.30x10°  1.60x10”’
05  910x10”  830x10°  2.81x10™°  9.67x10°  9.67x10°  1.68x10”
06 2.00x10™"  1.10x107° 442x107"°  9.50x10°  9.50x10°  9.12x107"
07 4.00x10™"  6.00x107"°  6.98x107""  9.08x10°  9.08x10°  1.05x107"°
08 300x107"  5.00x107"°  9.99x107"" 8.49x10°  8.49x10°  6.84x107"




It is obvious from the results presented in
Tables 1 and 2 that the four off-grid performs
better than the methods with three off-grid
points.

4. CONCLUSIONS

It is evident from Tables 1 and 2 that our
proposed methods are indeed accurate, and can
handle stiff equations. Also in terms of stability
analysis, the methods, with three off-grid point is

A—stableand that with four off-grid points is
a’(O)—stable. Comparing the two schemes

derived, the a(O)—stable hybrid methods

performs better than the A—stable hybrid
methods, in view of the results presented in the
Tables 1 and 2.
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