
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: arushdi@kau.edu.sa, arushdi@yahoo.com, arushdi@ieee.org, alirushdi@gmail.com; 
 
 
 

Current Journal of Applied Science and Technology  
 
29(2): 1-15, 2018; Article no.CJAST.43728 
ISSN: 2457-1024 
(Past name: British Journal of Applied Science & Technology, Past ISSN: 2231-0843,  
NLM ID: 101664541) 

 

 

A Comparison of the Methods of Boolean-Equation 
Solving and Input-Domain Constraining for Handling 

Type-2 Problems of Digital Circuit Design 
 

Ali Muhammad Ali Rushdi1* and Waleed Ahmad1 

 
1
Department of Electrical and Computer Engineering, King Abdulaziz University, P.O.Box 80204, 

Jeddah 21589, Saudi Arabia. 
 

Authors’ contributions  

 
This work was carried out in collaboration between the two authors. Author AMAR initiated and 

designed the study, performed the detailed mathematical analysis, solved the examples and wrote the 
first draft of the manuscript. Author WA managed the literature search and drew the figures. Both 

authors read and approved the final manuscript. 
 

Article Information 

 
DOI: 10.9734/CJAST/2018/43728 

Editor(s): 

(1) Dr. Xu Jianhua, Professor, Department of Geography, East China Normal University, China.  

Reviewers: 

(1) R. Rohith Krishnan, MG University, India. 

(2) Snehadri B. Ota, Institute of Physics Bhubaneswar, India. 

(3) N.  Arumugam, Anna University, India. 

Complete Peer review History: http://www.sciencedomain.org/review-history/26341 

 
 
 

Received 14 June 2018  
Accepted 03 September 2018 
Published 22 September 2018 

 
 
ABSTRACT 
 
With the advent of digital computers, several prominent problems of digital circuit design emerged. A 
particular class of these problems, (called Type-2 problems) can be divided into two subclasses 
depending on whether an honest translator is possible or a sneaky translator is warranted. The case 
of an honest translator is simply an inverse problem of logic in which knowledge of the vectorial 
function �(�) is utilised to produce its inverse vectorial function	�(�). Though an old method of 
solving type-2 problems was known almost half a century ago, two modern methods are now 
possible, namely the method of Boolean-equation solving and the method of input-domain 
constraining. The purpose of this paper is to expose and illustrate these two novel methods, with a 
stress on comparing them together and demonstrating their superiority to (as well as agreement 
with) the old conventional method. This purpose is achieved by way of three typical classical 
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examples for which conventional solutions are somewhat tedious and cumbersome, while modern 
solutions are simple and insightful. Throughout these examples, the Karnaugh map is effectively 
utilised, either in its conventional version or in its variable-entered version. The Boolean-equation-
solving method seems to involve certain unwarranted steps that might be possibly skipped. 
However, its utility can be extended beyond type-2 problems.  

 
 
Keywords: ‘Big’ Boolean algebras; digital circuit design; honest and sneaky translators; type-2 

problems. 
 
1. INTRODUCTION 
 
A classical problem of digital circuit design can 
be described by the general layout of Fig. 1. 
Various variants or special cases of this layout 
appeared on early scholarly work on the subject, 
including the pioneering contributions of Ledley 
[1,2], Bell [3], and Brown [4]. Fig. 1 shows a 
combinational logic circuit C that is comprised of 
two subnetworks A and B, while the final output 
can be viewed as output �(�,�) or (�(�,�,�)) of 
network B or output �(�,�) of network C. If the 
shaded path in Fig. 1 can be omitted, network B 
is called an ‘honest translator’ [4], while if it is 
needed (or used), this network is called a 
‘sneaky translator’ [4]. Based on Fig. 1, three 
‘elementary problems of digital circuit design’ are 
proposed [1-5], which are 

 
Type-1 problem: Given �(�) and �(�,�,�), find 

�(�,�). 
Type-2 problem: Given �(�)  and �(�,�)  find 

�(�,�) if an honest translator 
is possible; otherwise find 
�(�,�,�)  for a sneaky 
translator. 

Type-3 problem: Given �(�,�) or �(�,�,�) as 
well as �(�,�), find �(�). 

 
The type-1 problem is solved trivially by direct 
substitution and does not warrant further 
attention. The type-2 problem was handled by 
Ledley [1,2], Bell [3], and Brown [4].  It has been 
also treated much more recently (via modern 
techniques) by Rushdi [5], and will be revised 
further herein. The type-3 problem has been 
treated by Ledley [1,2] and much more recently 
(via modern techniques) by Rushdi and Ahmad 
[6]. 
 
We now address the probably intriguing 
question: Why should we bother revisit a problem 
that was really hot as back as half a century ago. 
The answer is that new computational methods 
associated with useful conceptual insight have 
recently been made possible through a variety of 

breakthrough developments made in the past 
few years. These include:  
 

1. The development of a method to suppress 
certain variables �  in a parent equation 
ℎ(�,�,�)= 1  so as to replace it by a 
simpler equation �(�,�)= 1 that can be 
used to solve for � in terms of � producing 
the set of solutions �(�,�) of the parent 
equation ℎ(�,�,�) that are independent of 
� [7].  

2. The emergence of a novel method to list all 
the particular solutions of a ‘big’ Boolean 
equation in a very compact space, thereby 
allowing easy selection of a specific 
particular solution that enjoys certain 
desirable features [6,8,9]. 

3. The convenience and power of rewriting 
interval based conditions of the form 
��≤ � ≤ ��  as a don’t-care based one 
� = 	��∨ �(��) [10-14]. 
 

Utilising the aforementioned developments, this 
paper introduces and compares two novel 
techniques for handling type-2 problems of digital 
circuit design. These are: 
 

1. A technique using solutions of ‘big’ 
Boolean equations. If an honest translator 
is possible, we are able to handle the 
inverse problem of logic by using �(�) to 
obtain �(�) and hence produce �(�,�)=
�(�(�),�) . Otherwise, we produce a 
sneaky translator  �(�,�,�). The essence 
of this technique is quite similar to that 
used for type-3 problems in [6]. 

2. A technique that enhances the earlier one 
of input-domain constraining developed by 
Brown [4] by augmenting it by the don’t-
care terminology by Reusch [9], Rushdi                
[5,11-13], and Rushdi and Albarakati          
[14]. This enhancement allows easy 
minimisation as well as the possibility of 
handling larger problems via the Variable-
Entered Karnaugh Map (VEKM) rather 
than the Conventional Karnaugh Map 
(CKM) [5,11-14]. 
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Details and characteristics of the two novel 
techniques are clarified herein via three detailed 
examples. Example 1 and 2 were earlier handled 
by Bell [3], while Example 3 was treated by 
Ledley [2] and Brown [4] via the conventional old 
method. As we proceed, we will demonstrate 
advantages of our two competing novel methods 
compared to the conventional method. These 
advantages include conceptual clarity, high 
speed, aggregation of tasks, and better control 
on outcomes. Such advantages do not pertain 
only to pedagogical issues but might also be of 
significant benefit to practical digital design. This 
introductory section is followed by Sections 2-4 
which discuss the aforementioned three design 
examples. Section 5 discusses our findings while 
Section 6 concludes the paper. 
 

 
 

Fig. 1. Layout of a general problem of digital 
circuit design. If the sneaky (lightly shaded) 

path is needed or used, the function �(�.�) is 
replaced by �(�,�,�) 

 

2. A SMALL EXAMPLE CIRCUIT 
 
This example was earlier handled by Bell [3] by 
the long and old conventional method, and it 
admits the existence of an honest translator. 
There are two inputs for subnetwork B (outputs 
for subnetwork A) 
 
�� = 	�� ∨ ���,             (1) 
 
�� = 	�����,             (2) 
 

and a single desirable output for the overall 
network C 
 

�(�)= 	���	∨ ��,             (3) 
 

and there are no side inputs � for subnetwork B. 
In our first novel method we obtain �(�) by first 
solving an inverse problem of logic (i.e., using 
�(�) to derive �(�)) and then obtaining �(�)   
via  
 
�(�)= �(�(�)).             (4) 
 
The information given by �(�) can be formulated 
as a single Boolean equation of the form 
 
�(�,�)= (�� ⊙ (	�� ∨ ���))	��� ⊙ (	�����)�= 1.					(5) 
 
The two-valued Boolean function �(�,�):	��

� →
��  is now viewed as a ‘big’ Boolean function 
�(�)= 	���

� → ���, where ��� is the free Boolean 
algebra ��(��,��), so that the roles of �� and �� 
is switched from that of independent variables to 
that of generators of ���  [14-25]. The natural 
map for �(�) is shown in Fig. 2. Its entries are 
some of the 4 atoms of ��� = ��(��,��) which 
are expressed in terms of the generators �� and 
��. Since these generators look like “variables” 
(in fact, they were originally variables), the map 
is called a Variable-Entered-Karnaugh map 
(VEKM). We use the technique developed in   
[15-18] to construct the auxiliary function  �(�,�) 
to be used in deriving the parametric solution of 
�(�)= 1 . These solutions are expressed in 
terms of a single arbitrary parameter � ∈	�� as 
[6,15,16,20] 

 
�� = 	���� ∨	����̅�	∨ �(��̅��),         (6a) 

 
�� = 	��̅��̅ ∨	����̅�	∨ �(��̅��),         (6b) 

 
��� = 	��̅��̅	∨����̅� 	̅∨ 	�(��̅��),         (6c) 

 
Substitution of (6b) and (6c) in (3) and (4) results 
in the following expression   
 
�(�)= 	��̅��̅ 	∨ 	����̅� 	̅∨	��̅��̅ ∨	����̅�	∨�(��̅��) 
 
= ��̅ ∨ �(��̅),             (7) 
 
in which the parameter � disappears. However, 
depending on whether we nullify or assert the 
don’t-care term in (7), the following two solutions 
are obtained for �(�) 
 
�(�)= 	��̅,            (8a) 
 
or 
 
�(�)= 	��̅ ∨ ��̅.           (8b) 

A

B

C

Z = Z(X)

X

Y

�(�,�)

�(�,�)
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in agreement with the solution obtained in Bell 
[3]. 
 

 
 

�(�) 
 

Fig. 2. The natural map for �(�) in Equation 
(5). Each map entry is a particular minterm or 

atom over (��, ��). The polarity of �� is 

positive over (�� ∨ ���), while that of �� is 
positive over ����� 

 

 
 

�(�,�) 
 

Fig. 3. The auxiliary function used to derive 
the parametric solutions of �(�)= � in 

Section 2 
 
Now, we employ our second novel method 
adapted from the input-domain constraining 
method of Brown [4]. Our basic information �(�) 
can be cast in the equational form ℎ(�,�)= 0 
where ℎ(�,�)= �(̅�,�) is represented by the 
natural map for ℎ(�):	���

� → ���  in Fig. 4. 
According to Brown [4], our current problem can 
be described by  
 
{ℎ = 0} Þ	{� = �},            (9) 
 
which has the interval solution 
 

ℎ�� ≤ � ≤ ℎ∨ �.           (10) 
 

We now rewrite the double-inequality (10) in the 
don’t-care notation [11-14] 
 
� = ℎ�� ∨ �(ℎ∨ �) 

 

   = ℎ�� ∨ �(ℎ) 
 

   = �� ∨ �(�)̅.                         (11) 

and use the maps in Figs. 2, 4, and 5 for ℎ� =
�,ℎ, and �  to construct the natural map for s                     
in Fig. 6 according to (11). This map is simplified 
by noting that (11) indicates that � = � ∨�(�)̅=
� ∨ �(1) when � = 1 , and that � = �(�)̅ when 
� = 1 . Fig. 6 can immediately be used to       
produce an expression of � that is a function of 
both �  and � , i.e., a sneaky translator, of the 
form  
 

�(�,�)= (������	∨����)�����̅	∨ 	�(1)�∨

��������̅��̅	∨ 	�(1)�∨������(��̅ ∨ ��̅).        (12) 

 
However, we note that none of the four atoms of 
��(��,��) has a mixed assertion in the cells of 
the map of Fig. 6. In fact, each of atoms ����̅     
and ��̅��̅  is only asserted positively in this                   
map (in cells ������  and ����  for the former                 
atom and cell ����� for the latter one), while the 
atom ����  is only asserted negatively (in                       
cell ����� ). By contrast, the atom ����  is                      
neiter asserted positively or negatively in the 
map. The lack of any mixed assertion is 
equivalent to the condition demanded by                 
Brown [4] for an honest translator i.e., one for 
which �  is independent of �	[5]. According to                 
the VEKM “enlargement” rule [11,26,27], the 
VEKM in Fig. 6 might be read to yield any of                  
the two solutions in (8). Alternatively, we                    
note that, for an honest translator �  is a 
disjunction of all positively asserted atoms and 
possibly any of the totally don’t-care atoms [5], 
i.e., � is given by 
 
� = ����̅	∨	��̅��̅	∨ �(����) 
 
= ��̅ 	∨ �(��),           (13) 
 
is agreement with (8). 
 

 
 

ℎ(�,�)= 0 
 

Fig. 4. The natural map for �(�,�) needed in 
the second method in Section 2 

 

����̅ ����

��̅��̅ ����̅ ��

��

����̅(�)̅
∨ �(��̅��)

����(1)
∨ �(��̅��)

��̅��̅(1)
∨�(��̅��)

����̅(�)
∨ �(��̅��)

��

��

��̅ ∨ �� ��̅ ∨ ��̅

�� ∨ �� ��̅ ∨ �� ��

��



 
 
 
 

Rushdi and Ahmad; CJAST, 29(2): 1-15, 2018; Article no.CJAST.43728 
 
 

 
5 
 

 
 

�(�)= ���	∨ �� 

 
Fig. 5. Conventional Karnaugh map for �(�) 

expressed by (3) in Section 2 

 

 
 

�(�,�)	= ℎ�� ∨ �(ℎ) 
 

Fig. 6. Simplified natural map for �(�,�) in 
Section 2 

 

3. AN ASYMMETRIC EXAMPLE CIRCUIT 
 
This example was used by Bell [3] to 
demonstrate the power of his method and show 
how it is applied when the number of elements of  
� differs from that of �. In the current example, 
these two numbers are 5 and 4, respectively, 
while they were 2 and 2 in the example of 
Section 2. Again, there is no side inputs �, and 
�(�) is given by 

  
��(�)= 	��,         (14a) 

 
��(�)= 	����� ∨ ����,        (14b) 

 
��(�)= 	���(����� ∨ ����)	∨	��(����� ∨ ������) 

                           (14c)  
 

��(�)= 	���� ∨	��(�� ∨ ���),       (14d) 

 
��(�)= 	���(���� ∨ �����)	∨	���������,      (14e) 
 
and the required single output for the overall 
network C is 

 
�(�)= 	������	∨	���(��� ∨ ������ ∨ ����).        (15)

  

The information supplied by �(�)  in (14) is 
equivalent to a single Boolean equation of the 
form 
 

�(�,�)= 	⋀ (�� ⊙ ��(�))
�
��� = 1.                     (16) 

 

The function �(�,�): ��
� → �� is viewed as �(�): 

�� → � , where � = ��(��,��,��,��,��) has 5 
generators, 2� = 32  atoms, and  2�� =
4,294,967,296  elements. The natural map for 
�(�) is shown in Fig. 7. An entry in the cell � of 

this map is an atom of � of the form ��
��(�) ��

��(�)  

��
��(�)  ��

��(�)  ��
��(�). Since ��(�)= ��, the literal 

��
��(�) = ��

��  is  ��  when �� = 1  and ��̅  when 
�� = 0. For convenience, the map demonstrates 

the construction of ��
��(�) (as an example) by 

showing the loops of  ��(�) in (14c), so that 
��(�) appears as ��  inside these loops and as 
��̅ outside them. Out of the 32 atoms of �, the 
atom ������̅����̅ has two appearances in Fig. 7, 
which are each appended by one of the 
orthonormal tags ��  and ��̅  in Fig. 8, for the 
auxiliary function, while the atom ��̅��̅��̅��̅��̅ has 
three appearances in Fig. 7, which are each 
ANDed with one of the orthonormal tags, ��, ��̅�� 
and ��̅��̅  in Fig. 8, where each of �� , ��  and 
�� 	∈	�� [6, 16]. There are 11 other atoms with a 
single appearance in Fig. 7, which are each 
tagged by (1) in Fig. 8, while the remaining 19 
atoms do not appear at all in Fig. 7, and must be 
nullified as a consistency condition and further 
entered don’t-care in the cells of Fig. 8. There 
are 2*3 = 6 particular solutions for � . Fig. 9 
shows solutions for the �  variables, their 
complements, and their products, culminating in 
a map for � = �  where �  is given by (15). Note 
that the three parameters �� , ��  and �� 
disappeared from the final map for � , which 
makes �  parametrically unique (albeit 
incompletely specified). The map for � in Fig. 9(�) 
is particularly covered by the two essential prime-
implicant dotted loops ��̅��  and  ��̅��̅  (shown 
solid). To complete the coverage of �, either of 
the dotted non-essential loops ����̅��̅  or ����̅��̅ 
is needed. Hence, there are two minimal 
solutions of �. 
 

� = ��̅�� ∨��̅��̅ ∨ ����̅��̅,       (17a) 
 

� = ��̅�� ∨��̅��̅ ∨ ����̅��̅,       (17b) 
 
in agreement with the results of Bell [3]. 
 

Now, we consider the second method for this 
example. Fig. 10 represents the map for �(�) in 

1

1 1 ��

��

����̅ ∨
�(1)

�(��̅ ∨ ��̅)

��̅��̅ ∨
�(1)

����̅ ∨
�(1) ��

��
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(15), while Fig. 11 utilises Fig. 7 (and its 
complement) together with Fig. 10 to produce a 
map for �(�,�), which can be used to find a 
sneaky translator. However, we note that an 
honest translator is possible since none of the 32 
atoms of ��(��,��,��,��,��)  has a mixed 
assertion in Fig. 11. In fact, there are 6 atoms 
that are asserted positively, 7 atoms that are 

asserted negatively, and 19 atoms asserted 
neither way. Hence �  can be made an honest 
translator as a disjunction of the 6 positively 
asserted atoms and, possibly, any of the totally 
don’t-care (non-asserted) atoms. This precisely 
expresses �  by the map in Fig. 9( � ), thereby 
recovering our earlier results. 

 

 
 

�(�) 
 

Fig. 7. The natural map for �(�) in (16). Loops for ��(�) are shown, inside which �� appears 
and outside which ��� appears 

 

 
 

�(�,�) 
 

Fig. 8. The auxiliary function used to derive the parametric solutions of �(�)= 1 in Section 3 

��̅��̅��̅��̅��̅ ��̅��̅��̅��̅�� ��������̅�� ��������̅��̅

��̅��̅������̅ ��̅��̅��̅��̅��̅ ����̅��̅����̅ ����̅������̅

��̅��������̅ ��̅������̅�� ������̅����̅ ������̅����̅

��̅��̅��̅��̅��̅ ��̅��̅����̅��̅ ���������� ������̅����

��

��

��

��

�������

��������

�������

��������

��̅��̅��̅��̅��̅��̅��̅ ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��̅��̅��̅��̅�� ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��������̅�� ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��������̅��̅ ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��̅��̅������̅ ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��̅��̅��̅��̅��̅ �� ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

����̅��̅����̅ ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

����̅������̅ ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��̅��������̅ ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��̅������̅�� ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

������̅����̅�� ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

������̅����̅��̅ ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��̅��̅��̅��̅��̅��̅�� ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

��̅��̅����̅��̅ ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

���������� ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)

������̅���� ∨
�(��̅����̅ ∨ ����̅��̅ ∨
����̅�� ∨ ����̅��̅ ∨

��̅����̅��̅ ∨ ��̅��̅��̅�� ∨
��̅��̅���� ∨ ����������̅)
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Fig. 9. Solutions for the pertinent � variables, their complements and products in Section 3, 
culminating in a map for � = � as given by Equation (15) 
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Fig. 10. Conventional Karnaugh map for �(�) expressed by Equation (15) in Section 3 
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�(�,�)= ��	∨	�(�)̅ 
 

Fig. 11. Natural map for �(�,�) in Section 3 
 

4. A CIRCUIT EXAMPLE WITH SIDE 
INPUT 

 

This example was solved earlier by Ledley [2] 
and Brown [4] and differs from the earlier two 
examples, since it has side inputs � . The 
example is specified by: 
 

�(�,�)= 	���� ∨	������� 	∨ ��(����� ∨��),      (18) 
 

�(�)= �

����� ∨�����
����� ∨�����
���� ∨	�����

�.                                  (19) 

 

We rewrite (19) in equational form as 
 

 

 
 

and proceed to solve it for � in terms of �. In 
Figs (12a)-(12c), we draw maps of the factors in 
(19), and then AND them cell-wise to draw the 
natural map of � as a function of � over the big 
Boolean algebra ��(��,��,��). Fig. 12(d) shows 
that four atoms of ��(��,��,��), namely ��̅��̅��̅, 
��̅����̅ , ��̅���� , and ��̅��̅��  appear once each, 
and two atoms, viz., ����̅��, and ������̅ appear 
twice each, while the remaining two atoms 
(������, and ����̅��̅) never appear. This means 
that the consistency condition is   
 

������ ∨ ����̅��̅ = 0,           (21) 

 
and the number of particular solutions subject to 
that condition is (1)4*(2)2 = 4. The auxiliary 
function �(�,�) is shown in Fig. 13 where we 
used a parameter �� to create orthonormal tags 
{��, ��̅} for the atom ������̅, and an independent 
parameter   �� to create orthonormal tags {��, ��̅} 
for the atom ����̅��. From Fig. 13, we obtain the 
following expressions for the �  variables and 
some of their complements 

 
�� = 	��̅�� ∨  ������̅��̅ ∨  ����̅����	∨�(������ ∨ 
����̅��̅),	                                            (22a) 

 
�� = 	��̅�� ∨  ��̅�� ∨  ������̅�� 	∨ �(������ ∨ 
����̅��̅),	                                 (22b) 

 
�� = 	��̅�� ∨ ������̅��	∨ �(������ ∨ ����̅��̅),	  

(22c) 

 
��� = 	��̅��̅��̅ ∨  ������̅��̅ 	∨  ����̅�� ∨ �(������ ∨ 
����̅��̅),                                             (22d) 

 
��� = 	��̅��̅ ∨  ��̅�� ∨  ������̅��̅ 	∨ �(������ ∨ 
����̅��̅).                                                         (22e) 

 
Finally, �(�,�) in (18) is replaced by �(�,�), 
using intelligent multiplication [28-34] 

 
�(�,�)= 	��̅�� ∨	������̅�� ∨	��(��̅�� ∨ ����̅)	∨
�(������ ∨ ����̅��̅)                                         (23) 

��̅��̅��̅��̅��̅
∨ �(1)

��̅��̅��̅��̅��
∨ �(1)

�(��̅ ∨ ��̅ ∨ ��̅
∨ �� ∨ ��̅)

��������̅��̅
∨ �(1)

��̅��̅������̅
∨ �(1)

��̅��̅��̅��̅��̅
∨ �(1)

����̅��̅����̅
∨ �(1)

�(��̅ ∨ �� ∨��̅
∨ ��̅ ∨ ��)

��̅��������̅
∨ �(1)

�(�� ∨��̅ ∨ ��̅
∨ �� ∨ ��̅)

�(��̅ ∨ ��̅ ∨ ��
∨ ��̅ ∨ ��)

�(��̅ ∨ ��̅ ∨ ��
∨��̅ ∨ ��)

��̅��̅��̅��̅��̅
∨ �(1)

�(�� ∨�� ∨ ��̅
∨ �� ∨ ��)

�(��̅ ∨ ��̅ ∨ ��̅
∨ ��̅ ∨ ��̅)

�(��̅ ∨ ��̅ ∨ ��
∨��̅ ∨ ��̅)

��

��

��

��
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A) �� ⊙ ��(�)= �� ⊙ (����� ∨�����) 
 

 
 

B) �� ⊙ ��(�)= �� ⊙ (����� ∨�����) 
 

 
 

C) �� ⊙ ��(�)= �� ⊙ (���� ∨	�����) 
 

 
 

D) �(�) 
 

Fig. 12. Gradual derivation of the natural map of �(�) of in Section 4 
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�(�,�) 
 

Fig. 13. The auxiliary function needed in Section 4 
 
The function �(�,�) is represented by the VEKM 
of Fig. 14, which can be read to yield the minimal 
expression (obtained earlier by Brown [4]) 
 
�(�,�)= 	��̅��	∨ ����	∨����.                     (24) 
 
Fig. 14 can also be used to verify the non-
minimal solution obtained by Ledley [2] 

�(�,�)= 	��̅��	∨ ������̅	∨ ������̅.                  (25) 
 
Now, we consider the second method for                   
this example. Fig. 15 represents a VEKM for 
�(�,�) in (18). When one utilises Fig. 12(d)                 
(and its complement) to produce a  
representation of � = �� ∨ �(�)̅, Fig. 16 is simply 
obtained. 

 

 
 

�(�,�) 
 

Fig. 14. A VEKM representation for �(�,�) in Section 4 
 

 
 

�(�,�) 
 

Fig. 15. A VEKM representing �(�,�) in (18) of Section 4 
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�(�,�,�)= �� ∨ �(�)̅ 
 

Fig. 16. A VEKM representing �(�,�,�) in Section 4 
 
With �(�,�,�) viewed as �(�):	�� → � , where 
� = 	��(��,��,��,��,��) has 32 atoms. Again, 
none of these atoms (which can be viewed as 
the cell products of the 5-variable Karnaugh map 
in Fig. 17 has a mixed assertion. In fact, we are 
forced to enter a single entry of 1 in 14 cells of 
the map in Fig. 17, to enter a unique 0 entry in 10 

cells of that map, and to leave 8 cells intact 
(presumably don’t-cares). This means that 
�(�,�,�) can be represented by the map in Fig. 
17 as �(�,�) independently of  �, and it has the 
minimal coverage depicted by the three loops in 
Fig. 17 which corresponds to the expression 
(24). 

 

 
 

�(�,�) 
 

Fig. 17. A 5-variable Karnaugh map for admitting a representation of  �(�,�,�) that is 
independent of � 

 

�(��	∨ �� ∨ ��) ����̅����̅ ∨
�(��	∨ ��̅ ∨ ��)

��̅���� ∨
�(1)

��������̅ ∨
�(��̅	∨ ��̅ ∨ ��)
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Table 1. Comparison of the methods of Boolean-equation solving and input-domain 
constraining 

 
 Boolean-equation solving Input-domain constraining 
Scope A general-purpose technique A special-purpose technique 
Utility Useful for a wide variety of 

applications including the Type-
2 and Type-3 problems 

Particularly tailored to the 
Type-2 problem 

Efficiency Relatively less efficient as it 
produces parameters that 
ultimately disappear 

Relatively more efficient as it 
does not include any 
unwarranted steps 

Potential as a replacement to 
the conventional method 

A good replacement due to its 
simplicity, insightfulness, and 
generality 

A good replacement due to 
its simplicity, insightfulness, 
and speed 

 

5. DISCUSSION 
 

This paper is a part of our own consolidated 
effort to modernise certain techniques for 
handling fundamental problems of digital circuit 
design. These efforts are just a modest 
supplement to extensive efforts by the digital-
design community [35-48].  We devote this paper 
to handling what is called Type-2 problems, with 
our sister publication [6] dedicated to Type-3 
problems. While our treatment of Type-3 
problems in [6] relied solely on equation-solving 
in big Boolean algebras, we considered herein a 
similar treatment for Type-2 problems, but we 
exposed it in comparison with another method [5] 
that adapts the input-domain constraining 
technique via utilisation of variable-entered 
Karnaugh map (VEKMs) together with modern 
don’t-care notation. Our method used in [6] as 
well as our two methods employed herein 
outperform the conventional method both in 
speed and clarity. Our main concern herein is to 
decide which of our two novel competing 
methods in preferable. The answer seems to be 
a matter of personal taste, convenience, and 
relative experience. There is definitely some 
similarity, interaction, and conceptual relationship 
between the two methods. We note that the 
Boolean-equation-solving method produces 
parametric solutions that lead to several 
parametric solutions expressed in terms of a few 
parameters. However, these parameters 
disappeared later in the final stage of problem 
solving. Therefore, the Boolean-equation-solving 
method seems to involve certain unwarranted 
steps that might be possibly skipped. However, 
its utility is not restricted to type-2 problems, 
since it handles type-3 problems (and many 
other problems) as well. In all the examples 
worked out herein, the two methods obtained 
exactly the same answers. These answers 
agreed with (or occasionally were more compact 

than) answers obtained conventionally. Table 1 
summarises our comparison of the two methods 
of Boolean-equation solving and input-domain 
constraining. 

 
6. CONCLUSIONS 
 
This paper exposed, illustrated, and compared 
the two methods of Boolean-equation solving 
and input-domain constraining, which are novel 
methods for handling Type-2 problems of digital 
circuit design. The paper demonstrated the 
superiority of these two methods to (as well as 
agreement with) the old conventional method. 
Three typical classical examples are presented, 
for which known conventional solutions are 
somewhat tedious and cumbersome, while the 
modern solutions presented herein are simple 
and insightful. Throughout these examples, the 
Karnaugh map is effectively utilised, either in its 
conventional version or in its variable-entered 
version. 
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