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Abstract 
 

This paper presents the one-dimensional, positive temperature coefficient (PTC) thermistor equation, 
using the hyperbolic-tangent function as an approximation to the electrical conductivity of the device. 
The hyperbolic-tangent function describes the qualitative behaviour of the evolving solution of the 
thermistor in the entire domain. The steady state solution using the new approximation yielded a 
distribution of device temperature over the spatial dimension and all the phases of the temperature 
distribution of the device without having to look for a moving boundary. The analysis of the steady state 
solution and the numerical solution of the unsteady state is presented in the paper. 
 

 

Keywords: Thermistor; electrical –conductivity; hyperbolic-tangent; method of lines. 
 

1 Introduction  
 
Thermistors are thermo-electric devices made from ceramic materials. The electrical conductivity of the 
device varies strongly with temperature; this effect has enabled thermistors to be used as switching devices in 
many electronic circuits. The study of the thermistor problems in heat and current flow has a long history of 
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applications in several areas of electronics and its related industries [1]. There are generally two kinds of 
thermistors; one is the positive temperature coefficient (PTC) thermistor in which the electrical conductivity 
decreases with increasing temperature, and the other is the negative temperature coefficient thermistor for 
which the electrical conductivity increases with increasing temperature [2,3]. 
 
The current flows through the PTC thermistor heating it to above a critical temperature, at which its 
conductivity decreases substantially. This leads to a steady state where the heat generated is balanced by the 
heat lost to the surroundings. For the device to be useful, the steady state current need to be much less than 
the original current.  
 
Mathematical problems related to the heat and current flow in the thermistor under the title ‘‘the thermistor 
problem’’ have been studied by several authors. The aspects of modeling, existence, uniqueness, and 
behaviour of solutions have also been presented [4,5,6,7]. 
 
Wood and Kutluay [8] gave an approximate functional solution for the one-dimensional thermistor problem 
with a step function electrical conductivity, using the heat balance integral method. They showed that the 
solution exhibits all the correct physical characteristics and that the simple model also exhibits a possible 
mechanism by which the observed cracking of the thermistor might be initiated. Bahadir [9] solved the PTC 
thermistor problem numerically by finite element method using quadratic splines as shape functions and also 
obtained the steady state solutions. The result obtained was compared with the analytical solution and found 
to exhibit correct physical characteristics of the PTC thermistor. 
 
Kutluay [8] gave the description of the three phases of steady state solutions obtainable assuming 

monotonicity of the temperature profile such that the point 0x will always be the hottest and the first 

point to reach the critical temperature 1cU above which  drops. Due to the decrease in , the rate of 

heat loss at 1x will ultimately equal the internal heat generation and a steady-state will be reached [7,8].  

 

1.1 Mathematical approximation of the electrical conductivity 
 

Traditionally, the step function was used as an approximation for the electrical conductivity though it does 
not completely reflect its qualitative behaviour. This has necessitated the search for a more representative 
approximation of the PTC conductivity characteristics for use in solving the PTC thermistor problem. Many 
researchers have therefore sought to find an approximate representation for the electrical conductivity. 
 
Fowler et al. [10] represented the variation of  with u  (electrical conductivity) as an exponential function 

which is continuous but with discontinuous derivatives at 1u and 2u . 
 
Kutluay et al. [11] observed from the step function conductivity that the electrical conductivity in the warm 

phase drops sharply from 1 at the temperature 10 u   to at the temperature 1u  and that the 

decrease can cause oscillation in the predicted temperature when the finite difference methods are applied to 
the problem. In order to avoid unwanted oscillations in the numerical solution, they presented a modification 
to the electrical conductivity depending on the location of the interface unknown a priori.   
 

Kutluay and Wood [12] introduced a slightly more realistic model for the electrical conductivity ( )(u ) 

whose value decreases linearly from 1 at the critical temperature 1critu  to at a temperature 1  which 

is mathematically equivalent to a ramp function. In the limit as   approaches zero, the ramp model 
approaches the step model. In other words, its behaviour is a ‘‘mushy'' form of the step function 
conductivity. In their analysis, they concluded that the ramp function is also not particularly a good model 
for electrical conductivity since it is, of course, a stretched form of step one.   
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This paper presents a solution of the PTC thermistor problem using a hyperbolic-tangent approximation of 
the device conductivity which is a good representation of its qualitative behaviour. The exact steady-state 
solution of the problem, using this new approximation is presented as well as the numerical solution using 
the method of lines. 
 
In the rest of the paper, a recollection of the PTC thermistor model is presented in section two of the paper. 
The steady-state solution of the problem, using the method of asymptotic expansion and the numerical 
solution using the method of lines are shown. 
  

2 Materials and Methods  
 
2.1 The problem statement 

 
The typical thermistor model is an initial-boundary-value problem comprising of coupled non-linear 
differential equations for heat and current flow. The dimensionless temperature of the PTC thermistor 

),( txu  satisfies the following heat equation [13,14] 
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and the initial condition 
 

10,0)0,(  xxu                   (4)

  
   

in which  is a positive heat transfer coefficient and  is the ratio of electric heating to heat diffusion. 

The electric potential ),( tx in the device is governed by  
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subject to the boundary condition 
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and the initial condition  
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In the traditional solution of the thermistor problem, )(u  the electrical conductivity is approximated by   










1

101
)(

u

u
u


                   (8) 

 

which is mathematically equivalent to a step function and with a typical value
510

. 
 
However, The electrical conductivity of a physical PTC device does not display the step-wise discontinuity 
exhibited by the approximation equation (8). 
 

  
 

Fig. 1. Typical variation of resistance with 
temperature for a PTC thermistor 

 

 
Fig. 2. Typical variation of conductivity with 

temperature for a PTC thermistor 
 

The typical Resistance/Temperature characteristic is shown in Fig. 1 [15]. From this, we obtain a 
proportional conductivity/resistance characteristics as shown in Fig. (2) 
 

 Following the disparity in the qualitative behaviour of )(u in the physical PTC characteristics and the 

approximation in equation (8), many researchers began to search for more appropriate representation for the 
electrical conductivity. 
 

2.2 A New approximation of the electrical conductivity 
 

In this paper, the study presents a new approximation to the electrical conductivity as given below 
 

20)(tanh)()(  uuku                               (9) 

 

This is a hyperbolic tangent function where 2 is the initial conductivity,   is the final conductivity,  is 

the normalized critical temperature, u is the normalized temperature and k controls the slope. This 
approximation is so generic that by adjusting the slope it can be made to approximate the step function. For 

example taking 500k , we have a step function approximation. 

 

Consider an initial conductivity 12  , a critical temperature 1u and 100k , the hyperbolic tangent 

approximation can be written as 
 

20)1(100tan)5.0(5.0)(  uuu                            (10) 
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A graph of a typical conductivity variation with temperature (normalized) alongside that of the hyperbolic 
tangent approximation is presented in Fig. 3. 
 

 
 

Fig. 3.  Graph of typical conductivity variation with temperature and that of the new approximation 
 

This electrical conductivity given by the hyperbolic tangent function is defined for the full range 20  u
and covers the traditional points of discontinuities, assumed in most reported studies [16-18]. 
 

However our new approximation, when evaluated at 1u gives 1)( u , which in related literature, 

corresponds to the cold phase; and when evaluated at 1u gives  )(u , which is traditionally referred 

to as the hot phase. In the same manner, the warm phase may be characterised by values of u near unity. 
 

The exact solution of the electric potential problem (5), (6) and (7) is easily found to be  xtx ),(  (

10  x and 0t ) and the thermistor problem is reduced to a heat conduction description 
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supplemented by boundary conditions (2) and (3) and the initial condition (4). 
 

2.3 Exact steady-state solutions 
 
At steady-state the time derivative in the model equation vanishes, we obtain the steady-state solution for 
each phase as follows. For the cold and hot phases, the steady-state solution is obtained by standard 
analytical methods and results obtained are the same with [7]. 
 

2.3.1 Cold phase (� < � ≤ ��)
  

  

 
In this phase 

c
UtxU  ),(0 and 1)( U , so the steady-state equation is 
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Enforcing the condition 1)0( u , we have 
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2.3.2 Hot phase (�(�, �) >  �� and �(�) = �) 

 
The steady state equation is  
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subject to boundary conditions (2) and (3) and the solution is  
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Enforcing the condition 1)1( u , we have  

 

                                                            (17) 

 

2.3.3 Warm phase 
 

The electrical conductivity is described by  
 

)1(100tan)5.0(5.0)(  uu  and the steady state equation is given by 
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where )5.0(    
 
We now solve (19) by the method of asymptotic expansion [19].  
 
Assume a solution of the form 
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Applying the boundary conditions and simplifying, we have 
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Enforcing the condition )0(1)1( uu  , we have 
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2.4 Numerical solution (Method of lines) 
 

The method of lines is regarded as a special finite difference method but more effective with respect to 
accuracy and computational time than the regular finite difference method. The method of lines (MOL) 
involves discretising the spatial domain and thus replacing the partial differential equation with a vector 
system of ordinary differential equations(ODEs), for which efficient and effective integrating packages have 
been developed [20,21,22]. The MATLAB package has strong vector and matrix handling capabilities, a 
good set of ODE solvers, and an extensive functionality which can be used to implement the MOL [22]. 
MOL has the merits of both the finite difference method and analytical method. Results on the stability of the 
method are given by [23,24]. 
 

We apply finite difference method to discretise the spatial domain ]1,0(x  of equation (11).  
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The second order approximation for xu is given as 
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Applying this to the boundary condition (2) we have 
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And to the boundary conditions (3) we have 
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substituting(31) and (32) in (30) gives a system of approximating ordinary differential equations. 
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2.5 Stability analysis 
 

We apply the indirect method of Lyapunov to determine the local stability of the system. According to 
Lyapunov, if the linearization of the system exists, its stability determines the local stability of the original 
system [24]. 
 
Theorem 1. (Lyapunov’s indirect method) 

 

Let 0x be an equilibrium point for the nonlinear system )(xfx , where 
nRDf : is continuously 

differentiable and D is a neighbourhood of the origin. Let the Jacobian matrix A  at 0x  be: 

 

0




xx

f
A . Let nii ,,1,   be the eigenvalues of A . Then, 

 

1. The origin is asymptotically stable if 0)Re( i for all eigenvalue of A . 

2. The origin is unstable if 0)Re( i  for any of the eigenvalues of A [17]. 

 
Evaluating the eigenvalues of the linearized equation for 2000 2.0 ,and 05.0x , shows that all 

eigenvalues are real and negative; hence the solution is stable. 
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This system of ordinary differential equations (ODEs) is then integrated using the Matlab integrator ode15s 
which is a stiff integrator since the ordinary differential equations in the system are sufficiently stiff. The 

values of  and  used are chosen to satisfy inequalities (14), (17) and (29) obtained from the exact steady-

state solution. 
 

3 Results 
 
Results obtained are shown in Table 1. 

 
Table 1. Table of the exact solution and numerical solutions by method of lines 

 
 
 
x  

 

Cold phase Warm phase Hot phase 

)( xu
(Exact) 

)( xu
(Numerical) 

)( xu
(Exact) 

)( xu
(Numerical) 

)( xu
(Exact) 

)( xu
(Numerical) 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.5500 
0.5495 
0.5480 
0.5455 
0.5420 
0.5375 
0.5320 
0.5255 
0.5180 
0.5095 
0.5000 

0.550000 
0.549500 
0.548000 
0.545500 
0.542000 
0.537500 
0.532000 
0.525500 
0.518000 
0.509500 
0.500000 

1.1 
1.099 
1.096 
1.091 
1.084 
1.075 
1.064 
1.051 
1.036 
1.019 
1.000 

1.105563 
1.105102 
1.03707 
1.101377 
1.097925 
1.093381 
1.087693 
1.080428 
1.071730 
1.061253 
1.048011 

5.500 
5.495 
5.480 
5.455 
5.420 
5.375 
5.320 
5.255 
5.180 
5.095 
5.000 

5.50000 
5.49500 
5.48000 
5.45500 
5.42000 
5.37500 
5.32000 
5.25500 
5.18000 
5.09500 
5.00000 

 

4 Conclusion 
 
We have presented a mathematical model of the PTC thermistor problem with a new conductivity which is a 
hyperbolic-tangent approximation and describes the qualitative behaviour of the evolving solution of the 
thermistor in the entire domain. The result obtained for all the phases of temperature evolution shows that 
our approximation is a better representation for the electrical conductivity of the PTC thermistor. Moreover, 
for numerical techniques the absence of a discontinuity will improve stability and convergence properties, 
the new electrical conductivity is, therefore, a good improvement over the step function conductivity and the 
modified electrical conductivity in that it describes the conductivity and takes care of the discontinuities. We 
have also shown that the method of lines is a good method for solving the problem since results obtained are 
in good agreement with exact steady-state solutions. In addition, we showed that the solutions obtained by 
the method of lines are stable solutions.  
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