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Abstract

Collatz conjecture (stated in 1937 by Collatz and also named Thwaites conjecture, or Syracuse,
3n+1 or oneness problem) can be described as follows:
Take any positive whole number N. If N is even, divide it by 2. If it is odd, multiply it by 3 and
add 1. Repeat this process to the result over and over again. Collatz conjecture is the supposition
that for any positive integer N, the sequence will invariably reach the value 1.
The main contribution of this paper is to present a new approach to Collatz conjecture. The key
idea of this new approach is to clearly differentiate the role of the division by two and the role of
what we will name here the jump: a = 3n+ 1.
With this approach, the proof of the conjecture is given as well as informations on generalizations
for jumps of the form qn + r and for jumps being polynomials of degree m >1. The proof of
Collatz algorithm necessitates only 5 steps:
1- to differentiate the main function and the jumps;
2- to differentiate branches as well as their first and last terms a and n;
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3- to identify that left and irregular right shifts in branches can be replaced by regular shifts in
2m-type columns;
4- to identify the key equation ai = 3ni−1 + 1 = 2m as well as its solutions;
5- to reduce the problem to compare the number of jumps to the number of divisions in a trajectory.

Keywords: Collatz; 3n+1; Syracuse; Thwaites; oneness; conjecture; even; odd; jumps; integer.
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1 Introduction

A Collatz [1] sequence is obtained from a start integer N to which one applies the infinitely iterative
function f defined by:

• f0 = N with the integer N ̸= 0;

• fi+1 = fi/2 if fi is even;

• fi+1 = 3fi + 1 if fi is odd.

For example, if we start with N = 7 and run the iterative function, we obtain the infinite list of
numbers:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, ...

The sequence falls into an endless loop (1, 4, 2) but it is arbitrarily accepted that the sequence is
considered done when the first number 1 is reached. This means that when the symbolic test ”if
(fi=1) done” is added to the function f , it transforms it into an algorithm that will be denoted
here by ” the Collatz algorithm”.

Collatz conjecture [2][3] is now the supposition that for any positive integer N , Collatz algorithm
will always end up at 1.

Hundreds of mathematicians have tried to crack this conjecture and, as far as I know, many of their
results to date are based on probabilities, cycles or other criteria. As the problem seems still open
and as I wanted to attack it with a new vision, all these results are consciously ignored here.

Let’s just notice two points:

• No information is known about the way Collatz became interested in the function fi+1 =
3fi + 1;

• The sequence of numbers obtained for any N , also named a trajectory, is often considered in
the literature as a list of undifferentiated numbers as in [4] and many other references. This
was the reason to choose an approach based on the differentiation of these numbers.

2 Preliminary Notes

2.1 New Terms: Main Function and Jump

In order to obtain a list of differentiated numbers we first introduce two new terms:

• the main function: for Collatz algorithm, the main function is the division by two of even
values of function f : fi+1 = fi/2 ;

• the jump: for Collatz algorithm, the jump is the special treatment fi+1 = 3fi + 1 that is
used to replace odd values fi = ni by an even value a = fi+1 usable by the main function
and that we will write for convenience and from now on as: a = 3n+ 1.

Let’s notice that jumps assure the continuity of the main function.
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2.2 The New Approach: Series of Numbers Si

From now on, the new approach on Collatz problem is given by representing the use of the main
function by commas and the use of jumps by semi-colons in Collatz sequence.

Then, for N = 7, Collatz algorithm gives the list of six “series of numbers”Si:

7 ; 22,11 ; 34,17 ; 52,26,13 ; 40,20,10,5 ; 16,8,4,2,1

This approach highlights also the fact that jumps a = 3n+1 differentiate the last number n of each
series by the fact it is odd.

As this display, as far as I know, has never been used, no more references can be given.

We notice, still for N = 7, that if another algorithm is used, based by instance on the jump
a = n+ 17 instead of a = 3n+ 1, this new algorithm falls into an endless loop as we have:

7 ; 24,12,6,3 ; 20,10,5 ; 22,11 ; 28,14,7 ;

24,12,6,3 ; 20,10,5 ; 22,11 ; 28,14,7 ;

...

where the last sequence (24,12,6,3 ; 20,10,5 ; 22,11 ; 28,14,7 ;) is looping on itself without reaching
1.

So, the question that has to be answered to prove Collatz conjecture is:

Does Collatz algorithm using the jump a = 3n+1, always ends up at 1 whatever is the start number
N and why?

To answer this question, we must first remind a general property of natural numbers and put forward
three new ones.

2.3 Property 1 of Natural Integers N

From the fundamental theorem of arithmetic given in 1801 by Gauss [5], any natural number N
can be factorized in only one way when the factorization is ordered by increasing primes, as:

N = 2wpα1
1 pα2

2 pα3
3 ...

where the exponents w and αi are positive or null integers and pi are increasing odd primes or:

Property 1: Any natural number N can be factorized as: N = n2w

where n > 0 is an odd integer, composite or prime

and w is a positive or null integer.

2.4 Property 2 of Series of Numbers Si

Using property 1, we can prove

Property 2: For any given natural number N , the series of numbers Si

are parts of branches Bi of general form: Bi = B(n,w) = n2w

with the odd integer n > 0 and the natural integer w > 0

3



Deloin; ARJOM, 14(2): 1-18, 2019; Article no.ARJOM.49643

Proof. Using Property 1 let’s build the following table filled bottom to top by an odd n in column
0 and adding numbers left to right by recurrently multiplying these ones by 2.

Table 1. Si are parts of branches B(n,w) = n2w for odd n > 0 and w > 0

Br\Cols: C0 C1 C2 C3 C4 C5 C6 C7 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B(17, w): 17 34 68 136 272 544 1088 2176 . . .
B(15, w): 15 30 60 120 240 480 960 1920 . . .
B(13, w): 13 26 52 104 208 416 832 1664 . . .
B(11, w): 11 22 44 88 176 352 704 1408 . . .
B(9, w): 9 18 36 72 144 288 576 1152 . . .
B(7, w): 7 14 28 56 112 224 448 896 . . .
B(5, w): 5 10 20 40 80 160 320 640 . . .
B(3, w): 3 6 12 24 48 96 192 384 . . .
B(1, w): 1 2 4 8 16 32 64 128 . . .

B(n,w) ↑ B(n, 0) = odd n ↑ w → 1 2 3 4 5 6 7 . . .

Now, reading from right to left, each line is a list of numbers that are divided by 2 until they reach
an odd number: this is exactly the first part of the definition of the main function.

2.5 Property 3 of Branches B(n,w)

Property 3: The infinite set of branches B(n,w) is

a covering system of the natural number set N

or:

Any positive integer (even or odd) is present in Table 1.

Proof. This is because all branches B(n,w) are of the form B(n,w) = n2w where n is odd,
which is exactly the general definition of natural numbers according to the fundamental theorem of
arithmetic.

In Table 1, property 3 is true only for numbers up to 17 as odd numbers are limited to 17, but it
suffices to expand the table upwards to reach any odd number 2w − 1.

For N = 7, the result given by Collatz algorithm can then be represented as follows, with a last
column indicating the part of branch used by each series of numbers:

Table 2. Collatz trajectory of N = 7 using parts of branches B(n,w = list)

ai , ... , ni branch

a1 = N = 7 , ... , n1 = 7 ; B1 = B(7, w = 0)
a2 = 3n1 + 1 = 22 , ... , n2 = 11 ; B2 = B(11, w = 1, 0)
a3 = 3n2 + 1 = 34 , ... , n3 = 17 ; B3 = B(17, w = 1, 0)
a4 = 3n3 + 1 = 52 , ... , n4 = 13 ; B4 = B(13, w = 2, 1, 0)
a5 = 3n4 + 1 = 40 , ... , n5 = 5 ; B5 = B(5, w = 3, 2, 1, 0)
a6 = 3n5 + 1 = 16 , ... , n6 = 1 B6 = B(1, w = 4, 3, 2, 1, 0)
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The trajectory for N = 7 can thus be summed up by the list of parts of branches:

B(7, w = 0) ; B(11, w = 1, 0) ; B(17, w = 1, 0) ;
B(13, w = 2, 1, 0) ; B(5, w = 3, 2, 1, 0) ; B(1, w = 4, 3, 2, 1, 0)

where we notice that, for a given N , the ni’s of the branches B(ni, w) are somewhat erratic.

2.6 Condition Enabling Collatz Algorithm to End Up at 1

For any N but if the series Si is supposed to be the last one which gives i=last, we deduce that it
is always the last jump from nlast−1 to alast = 3nlast−1 + 1 that leads to nlast = 1. Therefore we
have

Condition: Collatz algorithm ends up at 1
if there exists a triplet solution (i, ni−1, m) to the equation:

3ni−1 + 1 = 2m

2.7 Solutions n(m) to Reach 1

To solve the last equation where i = last = m, we can consider that either ni−1 (or ni) is a function
ni−1(m) or the converse, m is the function m = m(ni−1).

We can look for solutions m(ni) but as ni can be known only by running the algorithm to its
end, this is not a mathematical solution.

We have then to look for solutions ni(m). As the first ai of each branch (except maybe in the
first branch when N is odd) is of the general form:

ai = 3ni−1 + 1

we have first to check if the equation:
3n+ 1 = 2m (2.1)

where n and m are independent of i (and thus of N), has always at least one solution n(m) or not.
From equation (2.1), the solutions n(m) always verify:

n(m) =
2m − 1

3

In the two following subsections we will prove that they can be either integer or fractional (but, in
the last case, invisible because Collatz algorithm works only with integer n’s).

2.7.1 The Integer Solution n(m)

To study this integer solution is equivalent to study the factorization of the numbers 2m − 1 as
equation (2.1) implies that:

2m − 1 = 3n

We know that when m is even (m = 2k), we algebraically have

2m − 1 = 22k − 1 = 4k − 1k

4k − 1k = (4− 1)(4k−1 + 4k−2 + 4k−3 + ...+ 4 + 1)
so that:

22k − 1 = 3(4k−1 + 4k−2 + 4k−3 + ...+ 16 + 4 + 1)
22k = 3(4k−1 + 4k−2 + 4k−3 + ...+ 16 + 4 + 1) + 1

Therefore, whatever is N , the integer solution n(m) of the equation 3n+ 1 = 2m when m = 2k is:

m = 2k
n(m) = 4k−1 + 4k−2 + 4k−3 + ...+ 16 + 4 + 1
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2.7.2 The Fractional Solution n(m)

We know that when m is odd (m = 2k + 1), algebraically we have

2m − 1 = 22k+1 + (−1)2k+1

22k+1 + (−1)2k+1 = (2 + (−1))(22k + 22k−1 + ...+ (4 + 2) + 1)
but as:

22k + 22k−1 = (2 + 1)22k−1 = 3× 22k−1

we have:
22k+1 − 1 = 3(22k−1 + 22k−3 + ...+ 23 + 21) + 1
and with n = (22k−1 + 22k−3 + ...+ 23 + 21) :

22k+1 = (3n+ 1) + 1 = 3n+ 2
which can be written:
22k+1 = 3(n+ 1/3) + 1

This shows that when m = 2k + 1 is odd, the equation 2m = 3n + 1 has no integer solution n(m)
but always a fractional one that verifies:

n(m) =
2m − 1

3
n(m) = (22k−1 + 22k−3 + ...+ 23 + 21) + 1/3 = n+ 1/3

which always gives:
3n(m) + 1 = 3

(
(22k−1 + 22k−3 + ...+ 23 + 21) + 1/3

)
+1 = 3 (n+ 1/3)+ 1 = 3n+2 = 22k+1 = 2m

2.7.3 Local Conclusion on Solutions n(m)

We have therefore the important result
Local conclusion. Independently of N and for any m > 0, the general equation 3n+ 1 = 2m has
always a solution for n. This solution is:

either the integer solution of 3n+ 1 = 2m for any even m
or, for any odd m:

the fractional solution of 3n+ 1 = 2m

or the integer solution of 3n+ 2 = 2m

Remark. The fractional solution happens by instance for N = 7 as Collatz algorithm ends up at
f=1 for n = 682 + 1/3 because:

3(682 + 1/3) + 1 = 3× 682 + 2 = 2048 = 211

Thus, after m = 11 divisions (or commas), the full trajectory for N = 7 being:

7 ; 22,11 ; 34,17 ; 52,26,13 ; 40,20,10,5 ; 16,8,4,2,1

we get the following Table by retaining only the values f∗ that follow a division or comma:

Table 3. Details for N = 7

variables val val val val val val val val val val val

m 1 2 3 4 5 6 7 8 9 10 11
f∗ 11 17 26 13 20 10 5 8 4 2 1
2m 21 22 23 24 25 26 27 28 29 210 211

n(m) 1/3 1 7/3 5 31/3 21 . . . . . . . . . . . . (211 − 1)/3
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This shows that jumps (semi-colons) have not to be taken into account in the calculation of m
contradicting the usual way to consider Collatz sequence as a series of undifferentiated numbers
C(n) = sk(n)

∞
k=0 as in [6]. This can be illustrated by placing each division in a column and the

jumps ai under the last odd ni−1. This creates a 2-dimensional table for the trajectory where each
branch is isolated in a line, as follows:

Table 4. Trajectory of N = 7 in 11 divisions (commas)

Br\m 0 1 2 3 4 5 6 7 8 9 10 11

1 7
2 22, 11
3 (68) 34, 17
4 (208) (104) 52, 26, 13
5 (640) (320) (160) (80) 40, 20, 10, 5
6 (211) (210) (29) (28) (27) (26) (25) 16, 8, 4, 2, 1.

The numbers in parenthesis are not part of the trajectory but show the prolongation of each branch
on the left. The observation of this table gives three facts:

• All ni’s of the trajectory of N = 7 have a trajectory that ends up at 1.
• As each ai is even, at least one division is always possible after a jump and

Each ai = 2αini

• The number B of branches is equal to the number of lines in Table 4. We then have:

B = 1 + J where J is the number of jumps

Now, let’s consider the product P of the first ai of each branch i (let’s notice that for N = 7, in
the first line of Table 4, 7 is both an ai and a ni):

P =
∏B

i=1 ai =
∏B

i=1 2
αini = 2

∑B
i=1 αi

∏B
i=1 ni

As the number of divisions m to go from N to 1 by Collatz algorithm is the same as the number of
multiplications by 2 to go back from 1 to N , we have:

m =

B∑
i=1

αi (2.2)

so that: ∏B
i=1 ai = 2m

∏B
i=1 ni

and:

m = log2

∏B
i=1 ai∏B
i=1 ni

(2.3)

Verification for our case N = 7:

m = log2
7.22.34.52.40.16

7.11.17.13.5.1
= log22048 = log22

11 = 11

But due to the erratic values ni ending the successive branches, we are still not sure that one of
these erratic values will verify equation (2.1). The next section examines this problem.
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2.8 Capability of the Algorithm to Reach 1

We have seen with Property 3 that the branches B(n,w) = n2w with odd integers n are a covering
system of the set N of natural numbers. But we have also seen that the sequence of branches used
by a trajectory is somewhat erratic, so that it cannot be mathematically expressed.

Fortunately, there is another set of mathematical objects, different from the set of branches
B(n,w), that give another way to cover the set N of natural numbers and that can be mathematically
expressed.

2.8.1 Cut-out of N by Numbers 2m

An old result that Greeks philosophers may have known is that if we cut out the set N of the natural
integers using the successive powers of 2, we can write the whole set in 2m-type columns as follows:

Table 5. Cut out of N by powers of 2

. . . . . . . 2m+1 − 1
. . . . . . . . . . . . . . . . . . . . . .
. . . 15 23 39 . . . .
. . . 14 22 38 . . . .
. . . 13 21 37 . . . .
. . . 12 20 36 . . . .
. . 7 11 19 35 . . . .
. . 6 10 18 34 . . . .
. 3 5 9 17 33 . . . 2m+1
1 2 4 8 16 32 . . . 2m

0 1 2 3 4 5 . . . m

where each column m > 0 begins at 2m, ends at (2m+1 − 1) and contains:

(2m+1 − 1)− (2m − 1) = 2m numbers.

2.8.2 Right Shifts Implied by Jumps

With this cut out of N, we can see that:
• the second term (n = 2m + 1) in column m is always transferred by the jump a = 3n + 1 into
column m+ 1 because for n = 2m + 1, we always have:

a = 3n+ 1 = 3(2m + 1) + 1 = (2 + 1)(2m) + 4 = 2m+1 + 2m + 22

which proves that this number a is in column m+ 1 of Table 5.
• the upper term (n = 2m+1−1) of a column m > 0 is always transferred by a = 3n+1 into column
m+ 2 because for n = 2m+1 − 1, we always have:

a = 3n+ 1 = 3(2m+1 − 1) + 1 = (2 + 1)(2m+1)− 2 = 2m+2 + 2m+1 − 2 (2.4)

which proves that this number a is in column m+ 2 of Table 5.
These two points prove that the first (even) number ai of a series i > 1, produced by a jump
a = 3n+ 1, is always obtained by an always existing right shift of 1 or 2 2m-type columns in Table
5.
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2.8.3 Left Shifts Implied by the Main Function

All the even terms t of a 2m-type column with m > 0 can always be written as:

t = 2m + 2s with 0 6 s 6 2m−1 − 1
so that:

t/2 = 2m−1 + s with 0 6 s 6 2m−1 − 1

This means that a division by two of an even number in column m always places the result in
column m− 1, producing an always existing left shift of 1 column in Table 5.

2.8.4 A Critical Property of Collatz Algorithm

The critical property. Collatz algorithm has the capability to end up at 1.

Proof. For Collatz algorithm, we have seen that:
• each jump a = 3n+ 1 between two branches corresponds to an always existing right shift of 1 or
2 columns in N;
• each division by two corresponds to an always existing left shift of 1 column in Table 5;
These two points prove that the right and left shifts of 1 column are always possible so that

Collatz algorithm provides a continuous screening of the 2m-type columns in Table 5,
these columns being a covering system of N.

or, in other words:

No 2m-type column of Table 5 is left unreachable by Collatz algorithm,
particularly column C0 and its number 1.

This does not proves that Collatz algorithm always ends up at 1 but it proves the capability of
Collatz algorithm to end up at 1.

2.9 Reducing the Problem

As the jump ai+1 = 3ni + 1 is a step that moves the number ni away from 1 and corresponds to
a shift of 1 or two 2m-type column in Table 5 while a division corresponds only to a shift of one
2m-type column in Table 5, there is still a possibility for Collatz algorithm not to reach 1. With
this possibility, two problems appear.

A first problem is with modules: a jump ai+1 = 3ni + 1 is roughly three times greater than ni and
the next division ai+1/2 is only (3ni + 1)/2 ∼ 3ni/2, so that if divisions are at least as numerous
as jumps, the trajectory is moving away from 1.

A second problem is with counting: we do not know how many jumps and divisions will occur in
the trajectory.

But we can notice that, according to (2.4), the first division after a jump gives the maximum number

a/2 = 2m+1 + 2m − 1

which proves that the new type of jump a/2 = (3n+ 1)/2, already being a standard vertical jump
from one branch to another in Table 4 as it contains a, is also a right shift of only one 2m-type
column in Table 5 as it contains the division by 2.

If we adopt this new jump a/2 corresponding to a right shift of only one 2m-type column in Table
5, the problem is now reduced to compare the number of jumps J to the number of divisions m in a
trajectory as, if J > m the trajectory will never reach 1 as in that case it gets further and further
away from 1, but if J < m the trajectory will always reach 1.

9
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3 Proof of Collatz Conjecture

Proof. Using Table 4 and generalizing it without supposing that the algorithm ends up at 1, we get
the basic result already used in many papers

Table 6. Generalization of Table 4

i(Br)\j(divs) 0 ... ... ... j j+1 ... j+ti
1 N ...
2 ... ... ... ...

3=i-1 ... ... ... ... ni−1,j

4=i ... ... ... ... ai,j ai,j/2
1 ... ni = ai,j/2

ti

5 ... ... ... ... ... ... ... ... ...
6 ... ... ... ... ... ... ... ... ...

hence in the current line i

ai,j = ni2
ti

with ni odd.

Now, we look up at lines 1, i and i=last of Table 6.

Line 1 of Table 6. Here, the number of possible divisions depends only on the parity of N. Let’s
name this number m1 with m1 > 0.

Line i of Table 6. Here, αi,j ’s are unknown. All we can say is that only the first division is always
possible as ai,j = 3ni−1,j + 1 is always even as ni−1,j is odd to trigger a jump.

From now on, to keep the notation αi,j for unknown values, we choose to replace αi,j by 1 + αi,j

to highlight the first always possible division by the constant value 1. Then, considering lines i = 1
to i = B − 1 = J , we have

mi = m1 +
∑J

i=2(1 + αi,j)

Last line of Table 6 (i=last). Here, we get that the total number of divisions up to any line
i=last is

mtot = m1 +

J∑
i=2

(1 + αi,j) + tlast

= m1 + (J − 1) +

J∑
i=2

(αi,j) + tlast

Now, as odd nlast−1 > 3 (if =1 the algorithm is already at end), alast = 3nlast−1 + 1 > 10 > 23

so that the minimum exponent of 2 to come down to 1 is tlast > 4. This, in turn, always makes
(J − 1) + tlast > J so that the last centered equation proves that mtot > J and in turn that
mtot(> J) divisions are always more numerous than J jumps whatever are the number of lines in
Table 6, m1 and the values of αi,j ’s. This finally proves, according to section (2.9), that Collatz
algorithm always ends up at 1.

10
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4 Generalization for Even Jumps

A more general approach on Collatz problem is obtained by keeping the division by 2 as main
function but by considering the general even jump a = qn+ r where q and r verify gcd(q, r) = 1.

As in Collatz algorithm a jump is used only when n is odd, we choose to have only odd n’s. As this
makes a to be even, this implies that q and r have to be of same parity. For simplicity, we will use
hereafter only odd q’s and odd r’s with gcd(q, r) = 1.

We will now look for the conditions that odd q’s and r’s have to verify to make the general algorithm
end up at 1 and show that Collatz algorithm verifies them. This almost mimics what has been done
for the jumps a = 3n+ 1 but it enables us to prove the uniqueness of Collatz algorithm and other
results.

4.1 Condition 1 to End Up at 1

To reach the branch B(1, w) from a given N and so end up at 1, we know from section 2.6 that
for a given N and at the end of the branch Bi−1(ni−1, w), the general algorithm has to verify the
condition

qni−1 + r = 2m

To solve this condition is equivalent to study the factorization of 2m − r as, ignoring the index of
ni−1, we must have:

Condition 1: 2m − r = qn

This shows that the condition that makes the general algorithm reach the branch B(1, w) and end
up at 1 for a given N is that q must be a divisor of 2m − r, which then implies that n = (2m − r)/q
is an integer. It appears that only two cases have to be differentiated.

4.1.1 Case where q = 1 with any odd r > 0

With q = 1, a = qn+ r can be written a = n+ r and, with odd n and r, condition 1 can be written:

2m − r = n

We see now that the problem of the factorization of 2m − r is transferred from its factorization qn
to the factorization of n only. As, according to the fundamental theorem of arithmetic, any positive
odd number n can be written:

n = pα1
1 pα2

2 pα3
3 ... all pi’s being odd

we must have:

2m − r = pα1
1 pα2

2 pα3
3 ... all pi’s being odd

This makes appear the following result.

When the trajectory from N to n is possible and j is the number of divisors dj of n, for each divisor
dj of 2m − r, condition 1 is verified and j couples (mj , rj) determine j couples (qj , nj), or j couples
(qj , rj = 1) determine j couples (mj , nj). This is because for j values, we have

2mj − rj = dj(n/dj) = n

Then, the last two series always appear as

2kn, ..., 4n, 2n, n ; n+ r = 2m, 2m−1, ..., 4, 2, 1

and the j algorithms based on j couples (qj , rj = 1) always end up at 1.

11
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4.1.2 Case with odd q>1 and odd r>0

This case is identical to the first case when we change n into qn.

This makes appear the result.

When the trajectory from N to n is possible and j is the number of divisors dj of qn, for each
divisor dj of 2m − r, condition 1 is verified and j couples (mj , rj) determine j couples (qj , nj), or j
couples (mj , nj) determine j couples (qj , rj). This is because for j values, we always have

2mj − rj = dj(qn/dj) = qn

Again, the last two series always appear as

2k n, ..., 4n, 2n, n ; qn+ r=2m, 2m−1, ..., 4, 2, 1

and the j algorithms based on j couples (qj , rj = 1) always end up at 1.

As this case includes the couple (q = 3, r = 1), it includes Collatz algorithm and we have the
following result.

For a given N , if the trajectory from N to n is possible, condition 1 is verified for j couples (mj , rj)
that determine j couples (qj , nj), or j couples (qj , rj) whatever is m, and always among them the
couple (q1 = 3, r1 = 1), as Collatz conjecture has been proved.

4.2 Condition 2 on the Trajectory

The two last results are still conditional to the fact that:

Condition 2: the trajectory from N to n = ni has to be possible.

Proof. This condition is always verified by Collatz algorithm because:

• independently of N , the main function (the division by 2 applied only to even numbers) and the
jumps a = qn+ r, are always defined functions;

• and because Collatz algorithm verifies the critical condition in section 2.8.4.

The last remaining point is to generalize Condition 1 from one given N to all N ’s, which will give
the final result.

4.3 Uniqueness of Collatz Algorithm

Proof. We know from 4.1.2 that for a given N , condition 1 is verified for j couples (qj , rj) that
always include (q = 3, r = 1) which defines Collatz jump.

But for different N ’s, the number of couples j is generally different from one N to another. This is
because the number of divisors j that divide qn is generally different from one n to another.

The involved couples in the lists of couples are also generally different from one list to another.

As we have seen in 4.1.2 that the couple (q = 3, r = 1) is always present in these lists, independently
of N , it proves that for all N ’s, the unique couple (q, r) with odd r common to all lists that make
a general algorithm end up at 1, is the couple (q = 3, r = 1) which defines Collatz jump and
algorithm.

12
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Examples:

Table 7. Different jumps a = qn+ 1 that make the algorithm end up at 1
for different N ’s with q checked up to 199

N jumps nb divs = m jump #

N=7 a = 3n+ 1 11 1
N=7 a = 9n+ 1 6 2
N=7 a = 17n+ 1 11 3
N=7 a = 73n+ 1 9 4
. . . . . . . . . . . .

N=11 a = 3n+ 1 10 1
N=11 a = 3.31n+ 1 10 2
. . . . . . . . . . . .

N=24 a = 3n+ 1 8 1
N=24 a = 5n+ 1 7 2
N=24 a = 9n+ 1 11 3
N=24 a = 3.7n+ 1 9 4
N=24 a = 5.17n+ 1 11 5
. . . . . . . . . . . .

N=1000 a = 3n+ 1 72 1
. . . . . . . . . . . .

5 For any Even Jumps

5.1 A fast Check of a = qn+r

A fast method to check if an algorithm using a = qn+ r ends up at 1 is as follows:

• 1- Factorize 2m − 1 for all m’s up to any wanted limit;

• 2- All factors appearing in these factorizations are possible q’s but the only true solutions
are those for which no loop happens for a given N .

If q appears in the factorizations generated by 2m − 1, the given algorithm will potentially
end up at 1.

Example: Check of Collatz algorithm where r=1. For 2m ≤ 1000, we have:

Table 8. Check of Collatz algorithm

m 2m − 1 factorization

9 512-1=511 7.73
8 256-1=255 3.5.17
7 128-1=127 127
6 64-1=63 32.7
5 32-1=31 31
4 16-1=15 3.5
3 8-1=7 7
2 4-1=3 3
1 2-1=1
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As q = 3 appears in the factorizations generated by 2m−1 for any m, Collatz algorithm potentially
ends up at 1.

Table 8 also confirms the results of Table 7 as, by instance for N = 7, the incomplete list of jumps
making Collatz algorithm end up at 1 are obtained with q = 3, 9, 17, 73 which are values of Table 8.

5.2 The Fastest Algorithm

On one hand, when a = qn + r > n, the jump is a ”rear jump” with respect to 1 as the distance
from a to 1 is greater than that of n to 1.

On the other hand, when a = qn + r < n, the jump is a ”front jump” towards 1. Therefore, with
q = 1, a front jump a = n+ r is obtained if and only if r < 0.

As in this case we have q = 1 and a = n+ r with n = (2m − r)/q depending on m, for some small
values of m (the column in N where n is located) it may happen, if r is too much negative, that
a = n+ r becomes a big front jump that skips one or several 2m-type columns of N, leaving them
unreachable and making the algorithm a not continuous screening of the columns.

As the smallest odd ni that does not stop the algorithm is 3, it thus appears that the only acceptable
negative odd value of r that makes the jump a = n+ r to be an acceptable front jump, is r = −1.
It gives the exceptional jump:

a = n− 1

the unique and fastest algorithm that contains only front jumps and so, the fastest decreasing
sequence towards 1.

For N = 1000, this jump a = n− 1 gives:
1000,500,250,125 ; 124,62,31 ; 30,15 ; 14,7 ; 6,3 ; 2,1
with only 9 divisions, much less than the 72 divisions necessary for Collatz algorithm with jump
3n+ 1 as mentioned in Table 7. As a comparison:
• the jump a = n+ 1 gives:
1000,500,250,125 ; 126,63 ; 64,32,16,8,4,2,1 with 10 divisions,
• the jump a = n+ 3 gives:
1000,500,250,125 ; 128,64,32,16,8,4,2,1 with 10 divisions,
• the jumps a = n+ 5 and a = n+ 7 give loops on 5,
• the jump a = n+ 9 gives:
1000,500,250,125 ; 134,67 ; 76,38,19 ; 28,14,7 ; 16,8,4,2,1 with 12 divisions,
• the jump a = n+ 11 gives:
1000,500,250,125 ; 136,68,34,17 ; 28,14,7 ; 16,8,4,2,1 with 12 divisions,
• the jump a = n+ 13 gives:
1000,500,250,125 ; 138,69 ; 82,41 ; 54,27 ; 40,20,10,5 ; 18,9 ;
22,11 ; 24,12,6,3 ; 16,8,4,2,1 with 18 divisions.

6 On Polynomial Jumps of Degree m >1

As we have seen that Collatz algorithm is made of an integer main function f such that fi+1 = fi/2
and an integer jump function ai = 3fi +1 used to replace odd fi values, a full generalization would
have to take into account any combination of any two functions.

Here, we will only consider main functions f that are divisions by any integer polynomial gi:

14
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fi+1 = fi/gi

and jumps are integer polynomials:

ai+1 = a(fi)

used to replace fi+1 when this value is less than 1. To prove the method in a simple way, we will
do it first on an instance where gi and ai+1 are known.

6.1 A First Step

In a first step, let’s choose the divisor function:

gi = i2 + 1

where i is an integer (not a complex number). If we choose that this algorithm ends up at 1 when
m = 4, we consider the four first values of gi: g1,4 = {2, 5, 10, 17} whose product is 1700. Let’s
generate the sequence with f0 = N = 1700. We get the sequence with no jumps:

f0 = N, f1 = f0/g1, f2 = f1/g2, f3 = f2/g3, f4 = f3/g4
which gives:

f0 = 1700, f1 = 1700/2 = 850, f2 = 850/5 = 170,
f3 = 170/10 = 17, f4 = 17/17 = 1

and we get that the sequence ends up at 1 with f4 as expected.

This proves that there always exists an algorithm beginning with any number N and ending at 1
when the divisor function g(i) is an integer polynomial that generates the exact list of the factors
gi of N .

6.2 A Possible Second Step

A possible second step can be to find which jumps can be associated with f that can allow to start
the sequence with an f0 different from N = 1700.

To do that, we have to choose a value of i that makes the jump ai+1 replace a disqualified fi+1 =
fi/gi+1 < 1 coming from an integer N ′ different of N . By instance, let’s choose i = 2 such that
a2 = f2 = 170 replaces a disqualified value f2 = f1/g2 < 1. Here, the divisor function gi = i2 + 1 is
already defined but not the jump. Let’s choose by instance the jump:

ai+1 = (fi)
2 + b

which fixes b to the odd complements to f2 = 170 of these squares:

b = 170− (fi)
2

All the possible jumps are then:

ai+1 = (fi)
2 + 161 for fi = 3

ai+1 = (fi)
2 + 145 for fi = 5

ai+1 = (fi)
2 + 121 for fi = 7

ai+1 = (fi)
2 + 89 for fi = 9

ai+1 = (fi)
2 + 49 for fi = 11

ai+1 = (fi)
2 + 1 for fi = 13

15
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Choosing fi = f1 = 3, we have b = 161 and the sequence is:

f0 = 2f1 = 6, f1 = 3, f2 = 3/5 < 1 replaced by a2 = 32 + 161 = 170,
f3 = 170/10 = 17, f4 = 17/17 = 1

For all the possible odd values of b above and their associated values fi, the sequences are:

for fi = 3, b = 161: ai+1 = (fi)
2 + 161 fi = 6, 3; 170, 17, 1

for fi = 5, b = 145: ai+1 = (fi)
2 + 145 fi = 10, 5; 170, 17, 1

for fi = 7, b = 121: ai+1 = (fi)
2 + 121 fi = 14, 7; 170, 17, 1

for fi = 9, b = 89: ai+1 = (fi)
2 + 89 fi = 18, 9; 170, 17, 1

for fi = 11, b = 49: ai+1 = (fi)
2 + 49 fi = 22, 11; 170, 17, 1

for fi = 13, b = 1: ai+1 = (fi)
2 + 1 fi = 26, 13; 170, 17, 1

This proves that for all the odd values 3 to 13 and all the even values {3.to.13}21, all different of
N = 1700, the algorithm defined by:

fi+1 = fi/gi+1, gi = i2 + 1 and ai = i2 + b

ends up at f=1.

6.3 Proof of the Generalization

Proof. The above proof has been built upon chosen instances of N , g(i) and a(i). It does not allow,
at this stage, to generalize to all combinations of integer polynomials f(i), g(i) and a(i).

But, as according to the fundamental theorem of arithmetic, any integer number f(i) generated
by an integer function f can be factorized in only one way when the factorization is ordered by
increasing primes, it is also true for any number:

N =
m∏
i=1

f(i)

So, as it is always possible by a system of m equations to find a rational polynomial function g(i)
that generates the list of divisors of N , it is always possible to find an algorithm ending up at 1 for
any value of m and N , which proves the generalization.

7 Conclusion

The proof of Collatz algorithm necessitates only 5 steps:
1- to differentiate the main function and the jumps;
2- to differentiate branches as well as their first and last terms a and n;
3- to identify that left and irregular right shifts in branches can be replaced by regular shifts

in 2m-type columns;
4- to identify the key equation ai = 3ni−1 + 1 = 2m as well as its solutions;
5- to reduce the problem to compare the number of jumps J to the number of divisions m in a

trajectory.

Remark. The present proof is one among many others published nowadays. I am aware that there
are five categories of articles on conjectures and on Collatz conjecture in particular: 1- those who
makes contributions to the solution [7]..., 2- those that (try to) prove it [8]..., 3- those who suggest
that the conjecture is false [9]..., 4- those that (try to) prove that it is false [10]... and 5- those who
describe the historical and state-of-the-art situations at different times [11][12][13]...
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The goal of the present article was not to write on the state-of-the-art of Collatz conjecture nor
to reference the very basics of arithmetic progessions, divisibility, congruences,... . As I am an
independent and part-time hobbyist in mathematics, with no free access to libraries of universities
or other interesting websites, it was not possible for me to read a maximum of publications on the
subject. Anyway, these last are too numerous and many of them are intellectually out of reach for
me. As I refuse to list references that I have not read, it explains the small number of references of
this article.
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