
Introduction 
Schizophrenia is a mental disorder that seriously affects 
the brain mechanism in a way that these patients hear and 
see unreal things. These patients lose touch with reality 
in some occasions, and if these patients are left untreated, 
the symptoms of schizophrenia can be persistent and 
disabling. However, if a proper treatment is delivered in 
a timely and coordinated manner, it can help patients 
engage in school or work activities, be independent, and 
have personal relationships.1 Cortical data processing is 
seriously damaged in these patients which significantly 
affects the cognitive tasks.2,3

Electroencephalogram (EEG) signal is the spatio-
temporal integration of neurons’ activation, which can 

be captured by scalp electrodes. It is logical to expect 
an exclusive deterioration in the EEG signals for each 
specific brain disease. Experiments and observations on 
the EEG signals of different neurological and psychiatric 
diseases confirms this.4-6 Quantitative EEG analysis could 
be used as a standard tool for early diagnosis of these 
abnormalities.7-10

To reveal the EEG content, feature extraction is an 
essential step to convert EEG samples within successive 
widows into representative feature vectors to enable 
classifying healthy subjects from a specific patient group. 
Several research studies analyzed quantitative EEG signals 
to assess neural activations of the brain during cognitive 
tasks.11-13 In this regard, different features such as energy 
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Abstract
Background: Psychiatrists diagnose schizophrenia based on clinical symptoms such as disordered 
thinking, delusions, hallucinations, and severe distortion of daily functions. However, some of 
these symptoms are common with other mental illnesses such as bipolar mood disorder. Therefore, 
quantitative assessment of schizophrenia by analyzing a physiological-based data such as the 
electroencephalogram (EEG) signal is of interest. In this study, we analyze the spectrum and time-
frequency distribution (TFD) of EEG signals to understand how schizophrenia affects these signals. 
Methods: In this regard, EEG signals of 20 patients with schizophrenia and 20 age-matched 
participants (control group) were investigated. Several features including spectral flux, spectral 
flatness, spectral entropy, time-frequency (TF)-flux, TF-flatness, and TF-entropy were extracted from 
the EEG signals.
Results: Spectral flux (1.5388 ± 0.0038 and 1.5497 ± 0.0058 for the control and case groups, 
respectively, P = 0.0000), spectral entropy (0.8526 ± 0.0386 and 0.9018 ± 0.0428 for the control 
and case groups, respectively, P = 0.0004), spectral roll-off (0.3896 ± 0.0434 and 0.4245 ± 0.0410 
for the control and case groups, respectively, P = 0.0129), spectral flatness (0.1401 ± 0.0063 and 
0.1467 ± 0.0077 for the control and case groups, respectively, P = 0.0055), TF-flux (1.2675 ± 0.1806 
and 1.5284 ± 0.2057 for the control and case groups, respectively, P = 0.0001) and TF-flatness 
(0.9980 ± 0.0000 and 0.9981 ± 0.0000 for the control and case groups, respectively, P = 0.0000) 
values in patients with schizophrenia were significantly greater than the control group in most EEG 
channels. This prominent irregularity may be caused by decreasing the synchronization of neurons 
in the frontal lobe.
Conclusion: Spectral and time frequency distribution analysis of EEG signals can be used as 
quantitative indexes for neurodynamic investigation in schizophrenia.
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of EEG signals within different frequency bands, Shannon 
entropy, power spectrum, and autoregressive coefficients 
have been proposed as discriminative features.14-17 

Ciprian et al18 developed a machine learning algorithm 
(MLA) based on closed eyes resting-state EEG datasets 
for distinguishing patients schizophrenia from healthy 
controls. They showed MLA could achieve a total 
accuracy of 96.92% which implies that the symbolic 
transfer entropy feature may be a promising tool for 
clinical diagnosis of schizophrenia. 

Sun et al19 showed that the fuzzy entropy EEG feature 
was more significant than fast Fourier transform 
coefficients in classification of patients with schizophrenia 
from normal individuals. Kim et al20 claimed that EEG 
microstate features have reasonable accuracy in the 
classification of patients with schizophrenia from normal 
individuals. Prabhakar et al21 used several EEG features 
such as detrend fluctuation method, Hurst exponent, and 
recurrence quantification analysis and they achieved an 
acceptable classification accuracy for participants with 
schizophrenia. Sabeti et al22 reported a classification 
accuracy of 86% and 90% by linear discriminant analysis 
and Adaboost classifiers in differentiation of patients with 
schizophrenia from normal ones based on both linear 
and nonlinear EEG features. Kutepov et al23 revealed that 
schizophrenia could be better characterized by the largest 
Lyapunov exponents which increased the classification 
accuracy using larger number of significant channels. 

Synchronized oscillatory activity of temporal and 
frontal neurons is defined as an effective feature in 
diagnosing of normal cognition and perception. Research 
findings emphasize that in patients with schizophrenia, 
there is an obvious distortion of synchronized brain circuit 
activity.24,25 Thus, using informative EEG characteristics 
of asynchronization may help in the diagnosis of patients 
with schizophrenia. Since the relation between patients 
with schizophrenia and their EEG time-frequency 
characterizations is not well-investigated, we aimed to 
analyze both spectrum and time-frequency distribution 
(TFD) of EEG signals to understand how schizophrenia 
disorder affects the brain electrical activity. 

Methods and Materials 
Data Description 
Twenty patients with schizophrenia (gender: male, age: 
20-53 years) and 20 age-matched individuals (control 
group, gender: male, age: 18-55 years) were enrolled 
in the center for clinical research in neuropsychiatry, 
Perth, Western Australia in 2007. DSM-IV1 and ICD-1026 
criteria were used to diagnose and confirm schizophrenia 
or schizophrenic spectrum disorders in the affected 
group who were selected by browsing psychiatric hospital 
admissions. Patients with known organic neurological 
disease or history of substance addiction and significant 
language difficulties were excluded from the study. The 

participants in the control group were gathered by having 
advertisements in Red Cross blood donor agency or local 
newspapers. Control participants with any history of 
psychotic disorder either in themselves or in their first-
degree relatives were excluded. All participants with 
schizophrenia continued their prescribed neuroleptic 
therapy during this study.

A 24-channel Synamps neuroscan system with signal 
gain of 75 K was used for recording EEG signals. The length 
of recorded EEG signals for each person was two minutes. 
The subjects sat on a comfortable chair in upright seated 
position with open eyes. In addition to 20 routine EEG 
electrodes (Fpz, Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, 
F4, F7, F8, P3, P4, T5, T6, O1, and O2), bilateral mastoids, 
plus vertical and horizontal electrooculograms (VEOG 
and HEOG) were recorded with sampling frequency 
of 200 Hz. Eye-blink and muscle contracture artifacts 
were eliminated using suitable techniques.27 A band pass 
filter at 0.75 to 45 Hz was applied to reduce the very low 
frequency noise and power line frequency, respectively. 
Figure 1 shows Cz channel signal of a normal person and 
a patient with schizophrenia.

Suggested Features
A short description of the main state-of-the-art features 
used for EEG characterization in the frequency and time-
frequency domain is mentioned below.

Spectral Flux
Spectral flux28 defines the spectral change between two 
successive frames as:
 

( ) ( ) ( )( )2
1

1

, 1
Lf

i i
k

FL i i NX k NX k−
=

− = −∑
                                                                                                (1)

where ( ) ( )
( )1

L

i
i f

ll

X k
NX k

X k
=

=
∑

 is the kth normalized 
discrete 

Fourier transform (DFT) coefficient at the ith frame, 
and fL shows defined frequency band that is set to 100 Hz. 

Spectral Entropy
The irregularity of the signal spectrum29 is calculated by 
spectral entropy. In the ith frame, it is defined as:
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where Pi(k) is the power density over a known frequency 
band, and is normalized as ( ) 1iP k∑ = .

Spectral Centroid and Spread 
Spectral centroid and spread are two common measures 
for determining spectral position and shape. Spectral 
centroid represents the gravity center of the spectrum. In 
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ith frame, its value is defined as:
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where Xi(k) is the kth DFT coefficient at ith frame. 
Additionally, the second central moment of the spectrum 
(spectral spread) is calculated as the deviation of the 
spectrum from spectral centroid at ith frame is calculated 
as:
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where Ci is the spectral centroid of ith frame.

Spectral Rolloff
Spectral rolloff is computed as the frequency lies below 
a specified percentage of total spectral energy (e.g. 85%) 
and as a measure of spectral shape skewness at ith frame is 
defined as:
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where Xi(k) is the kth DFT coefficient at ith frame.

Spectral Flatness
A high spectral flatness shows a similar amount of power 
in all frequency bands of the spectrum (such as white 
noise) and the spectrum graph will be relatively smooth 
and flat. A low spectral flatness represents a spiky pattern 
for spectral power. Spectral flatness at the ith frame is 

calculated as:
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where Xi(k) is the kth DFT coefficient at the ith frame.

Time-Frequency Flux
Analyzing a signal in the time-frequency plane may have 
more advantages than considering it in separate domains 
of time and frequency.30,31 TFD specifies the energy 
distribution of a signal over the two-dimensional time-
frequency space. After estimating TFD, first measure 
in this domain named TF-flux extends the spectral flux 
by calculating the rate of signal energy change along 
frequency and time axis together.32,33 TF flux is defined as
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where ρ[n, k] shows TFD, l and m are predetermined 
values depend on the rate of signal energy change in the 
time-frequency plane (Here, these parameters are set to 
l = 1 and m = 1).

Time-Frequency Flatness
The TF-flatness is defined as a ratio of the geometric 
mean of a TFD divided by its arithmetic mean
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Figure 1. Cz Channel Signal of a Normal Person and a Patient With Schizophrenia.
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where ρ[n, k] shows TFD.

Time-Frequency Entropy
The TF-entropy estimates the randomness in the 
distribution of signal energy in the time–frequency 
domain. It is calculated as:
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where ρ[n, k] shows TFD.

Statistical Analysis
In this study, Student’s t test was applied to compare the 
means of the two mentioned groups. It is often used in 
hypothesis testing to determine whether a schizophrenia 
disorder actually has an effect on the population of 
interest or the two groups are different from each other. 
Here, P < 0.05 is considered as statistically significant.

Results
In the first stage, different measures for EEG signals of 20 
patients with schizophrenia and 20 control participants 
were calculated. EEG signals practically consist of a non-
stationary time series,34 hence time series are divided into 
2.56-second (512 samples) frames and their dynamics 
are assumed to be approximately stationary within each 
frame. The first measure, spectral flux was reported to 
be 1.5388 ± 0.0038 for the control group which is slightly 
lower than the case group (1.5497 ± 0.0058). Figure 2 
presents the topographic image for spectral flux averaged 
over the case and control groups. Differences of spectral 
flux values between the two groups are significant in most 
channels (P = 0.0000, Table 1). 

The second measure, spectral entropy is higher in 
patients with schizophrenia compared with the control 
group (0.9018 ± 0.0428 and 0.8526 ± 0.0386, respectively). 
There was a significant difference in most channels 
between spectral entropy of the two groups (P = 0.0004), 

with higher amounts in patients with schizophrenia 
(Figure 3 and Table 2). In both groups, the spectral 
entropy in frontal areas had lower values compared with 
other areas of the brain. 

Topographic images of spectral centroid for each group 
are presented in Figure 4, and numerical values of this 
parameter over different channels are shown in Table 3. 
There was no significant difference (P = 0.4620) between 
the two groups in spectral centroid (it was estimated to 
be 0.1180 ± 0.0022 and 0.1185 ± 0.0022 for control and 
case groups, respectively). In both groups, lower values of 
spectral centroid are obtained in frontal channels. 

Figure 2. Topographic Image of Spectral Flux for (a) Control Group, (b) Schizophrenic (Case) Group.

Table 1. The Mean ± SD of Spectral Flux

Control Group Schizophrenic Group P Value

Fpz 1.5348 ± 0.0361 1.5371 ± 0.0399 0.5138

Fz 0.5414 ± 0.0320 1.5562 ± 0.0344 0.0000

Cz 0.5434 ± 0.0292 1.5538 ± 0.0399 0.0015

Pz 0.5468 ± 0.0313 1.5521 ± 0.0342 0.0851

C3 0.5414 ± 0.0289 1.5592 ± 0.0383 0.0000

T3 0.5417 ± 0.0358 1.5411 ± 0.0325 0.8335

C4 0.5382 ± 0.0275 1.5565 ± 0.0337 0.0000

T4 0.5363 ± 0.0317 1.5458 ± 0.0376 0.0040

Fp1 0.5329 ± 0.0348 1.5572 ± 0.0428 0.0000

Fp2 0.5357 ± 0.0353 1.5460 ± 0.0405 0.0040

F3 0.5377 ± 0.0334 1.5509 ± 0.0340 0.0000

F4 0.5420 ± 0.0355 1.5551 ± 0.0329 0.0001

F7 0.5388 ± 0.0490 1.5418 ± 0.0410 0.4828

F8 0.5298 ± 0.0403 1.5468 ± 0.0436 0.0000

P3 0.5414 ± 0.0291 1.5495 ± 0.0309 0.0040

P4 0.5399 ± 0.0295 1.5499 ± 0.0294 0.0003

T5 0.5371 ± 0.0286 1.5475 ± 0.0308 0.0002

T6 0.5375 ± 0.0300 1.5503 ± 0.0304 0.0000

O1 0.5403 ± 0.0310 1.5475 ± 0.0277 0.0092

O2 0.5386 ± 0.0312 1.5497 ± 0.0259 0.0000

Total 1.5388 ± 0.0038 1.5497 ± 0.0058
0.0000

(P < 0.05)
 

 
(a) 

 
(b) 
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Figure 5 shows the topographic images of spectral 
rolloff for the two groups. The calculated parameter over 
different channels and statistical evaluation is shown 
in Table 4. For this modality, there was a significant 
difference between the two groups in most channels 
(P = 0.0129), with higher values of spectral rolloff for 
patients with schizophrenia (0.3896 ± 0.0434 for the 
control group and 0.4245 ± 0.0410 for the case group). 
Similar to spectral entropy and centroid, our results show 
specific differences in most channels. 

The spectral flatness was apparently lower in the control 

and case groups (0.1401 ± 0.0063 and 0.1467 ± 0.0077, 
respectively). Topographic images and numerical values 
of spectral flatness for the two groups are shown in Figure 
6 and Table 5, respectively, showing a significant difference 
between the two groups (P = 0.0055), with lower values in 
frontal and temporal channels.

The TFD-flux was estimated to be1.2675 ± 0.1806 
for the control group, but in the case group, it gained a 
much higher value of 1.5260 ± 0.2083. Figure 7 shows 
the topographic images of TF-flux for the two groups. 
Calculated parameter over different channels and statistical 

Figure 3. Topographic IMAGE for Spectral Entropy for (a) Control Group, (b) Schizophrenic (Case) Group.

Table 2. The Mean ± SD of Spectral Entropy

Control Group Schizophrenic Group P Value

Fpz 0.8036 ± 0.1636 0.7880 ± 0.2016 0.3656

Fz 0.8518 ± 0.1635 0.9155 ± 0.0892 0.0000

Cz 0.8876 ± 0.0957 0.8952 ± 0.1212 0.4575

Pz 0.8897 ± 0.0926 0.9109 ± 0.0992 0.0187

C3 0.8854 ± 0.0937 0.9374 ± 0.0824 0.0000

T3 0.8698 ± 0.1519 0.8742 ± 0.1162 0.7322

C4 0.8770 ± 0.1152 0.9351 ± 0.0780 0.0000

T4 0.8658 ± 0.1286 0.8943 ± 0.1271 0.0175

Fp1 0.8362 ± 0.1608 0.9433 ± 0.1119 0.0000

Fp2 0.8246 ± 0.1479 0.8760 ± 0.1187 0.0001

F3 0.8493 ± 0.1415 0.8932 ± 0.1656 0.0025

F4 0.8477 ± 0.1450 0.9252 ± 0.0958 0.0000

F7 0.7903 ± 0.1293 0.8208 ± 0.1343 0.0138

F8 0.7377 ± 0.1625 0.8439 ± 0.1282 0.0000

P3 0.8753 ± 0.1017 0.9217 ± 0.0746 0.0000

P4 0.8581 ± 0.1575 0.9290 ± 0.0666 0.0000

T5 0.8734 ± 0.1206 0.9177 ± 0.0980 0.0000

T6 0.8640 ± 0.1545 0.9329 ± 0.0778 0.0000

O1 0.8880 ± 0.1157 0.9347 ± 0.0879 0.0000

O2 0.8769 ± 0.1222 0.9465 ± 0.0737 0.0000

Total 0.8526 ± 0.0386 0.9018 ± 0.0428
0.0004

(P < 0.05)

Table 3. The Mean ± SD of Spectral Centroid 

Control Group Schizophrenic Group P Value

Fpz 0.1162 ± 0.0087 0.1162 ± 0.0098 0.9409

Fz 0.1172 ± 0.0082 0.1173 ± 0.0113 0.9174

Cz 0.1175 ± 0.0084 0.1162 ± 0.0100 0.1423

Pz 0.1158 ± 0.0083 0.1174 ± 0.0105 0.0781

C3 0.1176 ± 0.0085 0.1188 ± 0.0117 0.2152

T3 0.1220 ± 0.0131 0.1173 ± 0.0095 0.0000

C4 0.1192 ± 0.0094 0.1188 ± 0.0119 0.7093

T4 0.1216 ± 0.0105 0.1201 ± 0.0109 0.1202

Fp1 0.1207 ± 0.0115 0.1240 ± 0.0119 0.0029

Fp2 0.1170 ± 0.0092 0.1177 ± 0.0109 0.4588

F3 0.1181 ± 0.0089 0.1187 ± 0.0111 0.5309

F4 0.1176 ± 0.0094 0.1195 ± 0.0118 0.0653

F7 0.1137 ± 0.0092 0.1157 ± 0.0121 0.0430

F8 0.1146 ± 0.0083 0.1146 ± 0.0102 0.9826

P3 0.1166 ± 0.0079 0.1180 ± 0.0105 0.1209

P4 0.1173 ± 0.0091 0.1181 ± 0.0105 0.3464

T5 0.1187 ± 0.0087 0.1194 ± 0.0103 0.4051

T6 0.1201 ± 0.0094 0.1193 ± 0.0096 0.3512

O1 0.1192 ± 0.0097 0.1211 ± 0.0114 0.0610

O2 0.1193 ± 0.0102 0.1221 ± 0.0107 0.0040

Total 0.1180 ± 0.0022 0.1185 ± 0.0022
0.4620

(P > 0.05)

                                                               

 
(a) 

 
(b) 
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Figure 4. Topographic Image for Spectral Centroid for (a) Control Group, (b) Schizophrenic (Case) Group.

Figure 5. Topographic Image for Spectral Rolloff for (a) Control Group, (b) Schizophrenic (Case) Group.

Table 4. The Mean ± SD of Spectral Rolloff

Control Group Schizophrenic Group P Value

Fpz 0.3411 ± 0.1690 0.3373 ± 0.1656 0.8056

Fz 0.3786 ± 0.1381 0.4094 ± 0.0967 0.0061

Cz 0.4040 ± 0.1083 0.3933 ± 0.1135 0.3033

Pz 0.3852 ± 0.0888 0.4081 ± 0.0983 0.0092

C3 0.4131 ± 0.1093 0.4496 ± 0.1040 0.0003

T3 0.4427 ± 0.1696 0.4048 ± 0.1225 0.0065

C4 0.4191 ± 0.1269 0.4441 ± 0.0997 0.0198

T4 0.4383 ± 0.1563 0.4435 ± 0.1398 0.7073

Fp1 0.4168 ± 0.1582 0.4934 ± 0.1221 0.0000

Fp2 0.3636 ± 0.1609 0.4129 ± 0.1385 0.0005

F3 0.3925 ± 0.1482 0.4208 ± 0.1408 0.0366

F4 0.3783 ± 0.1399 0.4473 ± 0.1059 0.0000

F7 0.3110 ± 0.1355 0.3480 ± 0.1488 0.0056

F8 0.2653 ± 0.1649 0.3653 ± 0.1407 0.0000

P3 0.3851 ± 0.0984 0.4301 ± 0.0906 0.0000

P4 0.3852 ± 0.1319 0.4303 ± 0.0937 0.0000

T5 0.4144 ± 0.1195 0.4497 ± 0.1087 0.0011

T6 0.4125 ± 0.1518 0.4550 ± 0.0873 0.0003

O1 0.4243 ± 0.1223 0.4681 ± 0.1164 0.0001

O2 0.4203 ± 0.1264 0.4780 ± 0.1040 0.0000

Total 0.3896 ± 0.0434 0.4245 ± 0.0410
0.0129

(P < 0.05)

Table 5. The Mean ± SD of Spectral Flatness 

Control Group Schizophrenic Group P Value

Fpz 0.1345 ± 0.0676 0.1287 ± 0.0689 0.3642

Fz 0.1414 ± 0.0684 0.1447 ± 0.0657 0.6010

Cz 0.1368 ± 0.0666 0.1401 ± 0.0643 0.5969

Pz 0.1419 ± 0.0613 0.1467 ± 0.0684 0.4334

C3 0.1358 ± 0.0636 0.1547 ± 0.0623 0.0014

T3 0.1426 ± 0.0714 0.1433 ± 0.0643 0.9163

C4 0.1400 ± 0.0690 0.1507 ± 0.0644 0.0859

T4 0.1474 ± 0.0644 0.1518 ± 0.0677 0.4823

Fp1 0.1402 ± 0.0727 0.1597 ± 0.0771 0.0056

Fp2 0.1408 ± 0.0704 0.1420 ± 0.0649 0.8446

F3 0.1421 ± 0.0656 0.1418 ± 0.0674 0.9599

F4 0.1425 ± 0.0667 0.1533 ± 0.0684 0.0890

F7 0.1292 ± 0.0677 0.1349 ± 0.0656 0.3582

F8 0.1244 ± 0.0609 0.1385 ± 0.0682 0.0206

P3 0.1342 ± 0.0604 0.1491 ± 0.0639 0.0108

P4 0.1397 ± 0.0688 0.1462 ± 0.0664 0.3087

T5 0.1448 ± 0.0674 0.1484 ± 0.0706 0.5783

T6 0.1465 ± 0.0615 0.1481 ± 0.0679 0.7934

O1 0.1493 ± 0.0669 0.1559 ± 0.0736 0.3140

O2 0.1487 ± 0.0648 0.1549 ± 0.0694 0.3214

Total 0.1401 ± 0.0063 0.1467 ± 0.0077
0.0055

(P < 0.05)
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evaluation is presented in Table 6, showing a significant 
difference between the two groups (P = 0.0001), with 
higher values of TF-flux for patients with schizophrenia. 
Our results showed that the frontal channels had lower 
values compared with the other channels.

The TFD-flatness was 0.9980 ± 0.0000 and 
0.9981 ± 0.0000 for the control and case groups, 
respectively. Topographic images and numerical values 
of TF-flatness for the two groups are shown in Figure 8 
and Table 7, respectively. Our results showed lower TF-
flatness for the control group compared with patients 
with schizophrenia. There was significant difference 
between TF-flatness of the two groups in most channels 
(P = 0.0000).

The TFD-entropy was slightly lower in the control 
group compared with the case group (16.23 ± 0.07 and 
16.29 ± 0.13, respectively). Figure 9 shows the topographic 
images of TF-entropy for the two groups. The calculated 
values over different channels and statistical evaluation 
are presented in Table 8. For this parameter, there was no 
significant difference between the two groups (P = 0.1540) 
with a higher value in the case group. 

Discussion 
We found that most spectral and TF features for the 

Figure 6. Topographic Image for Spectral Flatness for (a) Control Group, (b) Schizophrenic (Case) Group.

Figure 7. Topographic Image for TFD Flux for (a) Control Group, (b) Schizophrenic (Case) Group.

Table 6. The Mean ± SD of TF-Flux 

Control Group Schizophrenic Group P Value

Fpz 0.9861 ± 0.5586 1.0797 ± 0.5575 0.0699

Fz 1.2784 ± 0.5698 1.6162 ± 0.5761 0.0000

Cz 1.4412 ± 0.5851 1.4907 ± 0.6141 0.3711

Pz 1.4420 ± 0.5515 1.6675 ± 0.5759 0.0000

C3 1.3917 ± 0.5944 1.6455 ± 0.5384 0.0000

T3 1.4013 ± 0.7626 1.4635 ± 0.6044 0.3287

C4 1.3163 ± 0.5571 1.7167 ± 0.4256 0.0000

T4 1.3600 ± 0.6479 1.6002 ± 0.6690 0.0001

Fp1 1.2676 ± 0.6534 1.3985 ± 0.4538 0.0123

Fp2 1.0266 ± 0.4976 1.4002 ± 0.5962 0.0000

F3 1.2028 ± 0.5993 1.4945 ± 0.6064 0.0000

F4 1.2297 ± 0.5735 1.5706 ± 0.5424 0.0000

F7 0.9266 ± 0.4906 1.1044 ± 0.5656 0.0003

F8 0.8407 ± 0.4893 1.1917 ± 0.5752 0.0000

P3 1.3838 ± 0.5640 1.7003 ± 0.5167 0.0000

P4 1.3651 ± 0.5886 1.7916 ± 0.5397 0.0000

T5 1.4363 ± 0.6823 1.5668 ± 0.5290 0.0213

T6 1.3328 ± 0.6020 1.7332 ± 0.5966 0.0000

O1 1.3818 ± 0.5900 1.6199 ± 0.6226 0.0000

O2 1.3387 ± 0.6360 1.7162 ± 0.6219 0.0000

Total 1.2675 ± 0.1806 1.5284 ± 0.2057
0.0001

(P < 0.05)
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Figure 8. Topographic Image for TFD Flatness for (a) Control Group, (b) Schizophrenic (Case) Group.

Figure 9. Topographic Image for TFD Entropy for (a) Control Group, (b) Schizophrenic (Case) Group.

Table 7. The Mean ± SD of TF-Flatness

Control Group Schizophrenic Group P Value

Fpz 0.9979 ± 0.0003 0.9979 ± 0.0004 0.7072

Fz 0.9980 ± 0.0004 0.9981 ± 0.0003 0.0001

Cz 0.9980 ± 0.0003 0.9981 ± 0.0003 0.1909

Pz 0.9980 ± 0.0003 0.9981 ± 0.0003 0.0125

C3 0.9980 ± 0.0003 0.9981 ± 0.0003 0.0349

T3 0.9980 ± 0.0003 0.9980 ± 0.0003 0.6113

C4 0.9980 ± 0.0003 0.9981 ± 0.0003 0.0005

T4 0.9979 ± 0.0003 0.9980 ± 0.0003 0.0039

Fp1 0.9979 ± 0.0004 0.9982 ± 0.0004 0.0000

Fp2 0.9979 ± 0.0003 0.9980 ± 0.0003 0.0335

F3 0.9980 ± 0.0003 0.9981 ± 0.0004 0.0007

F4 0.9980 ± 0.0003 0.9981 ± 0.0003 0.0002

F7 0.9979 ± 0.0003 0.9980 ± 0.0004 0.0783

F8 0.9979 ± 0.0004 0.9980 ± 0.0003 0.0001

P3 0.9980 ± 0.0003 0.9981 ± 0.0003 0.0101

P4 0.9980 ± 0.0004 0.9981 ± 0.0003 0.0000

T5 0.9980 ± 0.0003 0.9981 ± 0.0003 0.0062

T6 0.9980 ± 0.0003 0.9981 ± 0.0003 0.0000

O1 0.9980 ± 0.0003 0.9981 ± 0.0003 0.0001

O2 0.9980 ± 0.0004 0.9981 ± 0.0003 0.0000

Total 0.9980 ± 0.0000 0.9981 ± 0.0000
0.0000 

(P < 0.05)

Table 8. The Mean ± SD of TF-Entropy

Control Group Schizophrenic Group P Value

Fpz 16.09 ± 1.15 16.20 ± 1.15 0.3143

Fz 16.31 ± 1.19 16.27 ± 1.14 0.7233

Cz 16.35 ± 1.23 16.40 ± 1.28 0.7104

Pz 16.20 ± 1.11 16.35 ± 1.13 0.1395

C3 16.15 ± 1.14 16.26 ± 1.05 0.2914

T3 16.24 ± 1.24 16.07 ± 1.15 0.1192

C4 16.20 ± 1.12 16.39 ± 1.21 0.0776

T4 16.25 ± 1.30 16.22 ± 1.10 0.8063

Fp1 16.30 ± 1.27 16.48 ± 1.30 0.1234

Fp2 16.22 ± 1.24 16.14 ± 1.20 0.4456

F3 16.16 ± 1.14 16.32 ± 1.09 0.1168

F4 16.24 ± 1.15 16.28 ± 1.12 0.7296

F7 16.10 ± 1.29 16.12 ± 1.25 0.8542

F8 16.25 ± 1.36 16.18 ± 1.18 0.5396

P3 16.33 ± 1.22 16.34 ± 1.30 0.9160

P4 16.26 ± 1.19 16.40 ± 1.25 0.1931

T5 16.18 ± 1.15 16.18 ± 1.03 0.9984

T6 16.24 ± 1.12 16.30 ± 1.11 0.5627

O1 16.32 ± 1.30 16.30 ± 1.11 0.8666

O2 16.23 ± 1.20 16.25 ± 1.05 0.8676

Total 16.23 ± 0.07 16.27 ± 0.10
0.1540

(P > 0.05)
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case group were greater than the control group in all 
EEG channels which is in line with some other previous 
studies. Kutepov et al23 showed that Lyapunov exponent of 
the control group was lower compared with patients with 
schizophrenia. In another study, Koukkou et al35 reported 
different correlation complexity of EEG signals between 
the schizophrenic and control groups. They concluded 
that the complexity of the time series was significantly 
higher in patients with schizophrenia compared with 
the control group. They suggested the higher spatial 
complexity of the functional mechanisms of the brain 
in patients with schizophrenia could be a reflection of 
worsened organization of thinking.

Our results show that spectral and TF feature 
values decreased on the frontal cortex of patients with 
schizophrenia. According to some previous studies,36- 

38 most patients with schizophrenia exhibit structural, 
functional, and metabolic abnormalities on their frontal 
lobe. Magnetic resonance imaging shows functional and 
structural changes in volume, white matter, gray matter, 
and functional activity of this lobe, but the underlying 
mechanisms of these findings are not yet completely 
understood. Additionally, our findings over the 
topographic images showed that there were differences 
between the two groups especially in central and parietal 
channels that is in line with a previous study,39 showing 
that the brain connectivity in patients with schizophrenia 
increased non-synchronously compared with the control 
groups, especially in parieto-temporal and occipital 
regions. 

Some limitations of this study should be considered. 
First, a relatively small sample has been studied. Second, 
all patients with schizophrenia were under antipsychotic 
treatment, therefore, the presence of drug effects could 
not be completely excluded. Future studies in a larger 
population of patients are needed in order to exclude these 
limitations. As a future work, we decide to analyze and 
compare the mentioned features in different frequency 
band (delta, theta, alpha, beta, and gamma).

Conclusion
The analysis of spectral methods for EEG signals of patients 
with schizophrenia showed abnormal patterns compared 
with healthy patients. The achieved results support the 
bad connection hypothesis in schizophrenia. From a 
methodological view, this study suggests that analysis of 
spectral and TF distribution of EEG signals could become 
an efficient tool for studying the neurobiological basis 
of psychiatric disorders. The suggested features could 
classify the two groups with a high degree of reliability. 
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