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ABSTRACT 
 

The energy spectrum of the radial Schrodinger equation with the molecular Deng Fan potential has 
been obtained through the WKB approximation scheme. The radial WKB solution yields a 
transcendental or an implicit equation. The energy eigenvalues for non-physical and real molecular 
interacting systems are presented. In comparison with the numerical eigenvalues obtained with 
MATHEMATICA 3.0 package, the WKB approximation method produces improved results over the 
results obtained with other analytical methods in the literature. 
 

 

Keywords: Deng-Fan potential; diatomic molecules; WKB approximation method; Schrodinger 
equation. 

 

1. INTRODUCTION  
 

The Deng-Fan potential (DFP) has garnered 
interest recently in chemical and molecular 

physics for the study of diatomic molecular 
interacting systems [1]. The potential was 
proposed by Deng and Fan [2] to account for the 
irregular behavior of the Morse Oscillator as the 
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intermolecular distance (�) approaches zero and 
infinity [3]. Rong et al. [4] states that the DFP    
has the correct physical boundary conditions     
at   � = 0	and	� = ∞ . This potential is used in 
applied physics to study the ro-vibrational    
states of diatomic molecules. The mathematical 
representation of the potential as proposed by 
Deng and Fan [2] is given as 
 

�(�) = �� �1 −
�

�����
�
�
, � = ���� − 1, �∀(0, ∞)  (1)  

 

Where ��  is the potential depth, ��  is the inter-
nuclear distance, �  is a parameter that 
determines the range of the potential. The 
potential is long-range for large �  and short 
range for small parameter of �. The constant � is 
the position of minimum �� and � is the radius of 
the potential.  
 

The solutions of the bound states of the 
Schrodinger equation (SE) with the molecular 
Deng-Fan -type potential have been reported in 
the literature [1,3-12]. The relativistic bound 
states solutions of the Deng-Fan potential have 
also been presented in the literature [13,14]. 
 
Several methods have been used to solve wave 
equations for potential of interest. For the 
molecular DFP, the quantum system is exactly 
solvable for the s-wave case using some 
analytical approaches. However, the solution is 
not trivial for any arbitrary angular momentum 
quantum number �  arising from the centrifugal 
barrier term of the effective potential.  In such a 
case, the wave equation can be approximated by 
an appropriate analytical technique and 
numerical method. Oyewume et al. [3] states that 
the frequently used approximations to deal with 
the centrifugal term is the Pekeris-type 
approximation scheme [15] and the one 
proposed by Greene and Aldrich [16] for short 
range potential. These approximations enable 
the solubility of the quantum system of choice for 
any �  states quantum numbers. Several 
analytical techniques have been used to solve 
the SE with the molecular Deng-Fan type 
potential. Roy [1] obtained the bound states of 
the SE with the shifted DFP using the 
generalized pseudospectral (GPS) method. The 
energy eigenvalues for the diatomic molecules 
H2, LiH, HCl, CO were obtained for low and high 
lying vibrational (�)  and rotational (�)  quantum 
numbers. Using the Nikiforov- Uvarov (NU) 
method, Oyewumi et al. [3] obtained bound 
states of the DFP. They compared their results 
with the results obtained with other methods in 
the literature. The potential has been used to 

calculate the transition frequencies and 
intensities overtones of X–H stretching vibrations 
[4]. Diaf [6] obtained the bound state of the SE 
using the Feynman Integral Method (FIM). Dong 
and Gu [5] applied an approximation technique to 
obtain the energy eigenvalues of the DFP. The 
authors [5,6], compared their results with the 
energy eigenvalues obtained with the numerical 
support of MATHEMATICA package for short 
range potential [17] as reported in Dong and Gu 
[5]. Oyewumi et al. [9], using the Asymptotic 
Iterative Method (AIM), studied the 
thermodynamic properties including the bound 
state of the SE with the DFP.  Hamzavi et al. [10] 
applied the NU and the Amplitude Phase (AP) 
methods to estimate the energy spectrum of the 
SE confined by the shifted DFP. Other methods 
such as the Exact Quantization Rule (EQR) [11] 
and the Wentzel-Kramers-Brillouin (WKB) 
approximation scheme [12] have been applied to 
find the bound energy eigenvalues of the SE with 
the shifted DFP. The authors in Oluwadare and 
Oyewumi [11] obtained the energy spectra and 
the expectation values of some diatomic 
molecules generated by the shifted Deng-Fan 
potential. While Amos et al. [12] obtained the 
analytical bound state solution of the SE in 
closed form. 
 
In this present work, we used similar method 
employed by the authors in Amos et al. [12] to 
obtain the energy eigenvalues of the molecular 
DFP. The radial solution of the SE with both the 
DFP and shifted DFP using the WKB method 
does not yield a closed form energy expression 
but rather, it gives a transcendental-type or an 
implicit equation. In order to test the correctness 
of the result obtained in this present work, the 
energy eigenvalues were obtained with the help 
of MAPLE 18 programme. Furthermore the 
energy spectra are obtained for a few selected 
diatomic molecules such as HCl, LiH and ScH. 
Furthermore, by taking the energy difference 
(��� − ��) , the energy eigenvalues for the 
shifted DFP were obtained for HCl and LiH 
diatomic molecules. The results show good 
agreement with the ones obtained by other 
analytical and numerical methods in the 
literature and thus indicates that it can be 
extended to the investigation of other diatomic 
molecules.  

 
The paper is organized as follows. In section 
two, we recycle the synopsis of the WKB 
approximation method in order to make the 
paper self-contained. Section three contains the 
analytical bound state solution of the radial SE 
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generated by the DFP. Numerical results are 
presented in section four including the possible 
comparison with other analytical and numerical 
solutions in the literature. The paper is 
concluded in section five. 
 

2. THE WKB APPROXIMATION METHOD 
 

In quantum mechanics, the WKB approximation 
method offers a way of finding approximate 
solutions of linear differential equations. This 
semi-classical quantization approximation 
method has been treated in pedagogical 
textbooks [18,19]. For the Schrodinger equation, 
it is used to investigate tunneling rates through a 
potential barrier and also for the calculation of 
the energy eigenvalues of potentials of interest. 
This method is straight forward in that if we know 
the classical momentum of a quantum particle, 
then we can obtain the energy eigenvalues with 
the help of the WKB quantization integral. The 
method fails at the classical turning points where 
the energy just equals the potential function or 
where the classical momentum vanishes   
(�(�) = 0) . The WKB method yield accurate 
energy eigenvalues for large values of the radial 
quantum number and is also accurate for slow 
varying potentials functions. However, their 
accuracy varies quite markedly for the ground 
and other low lying states depending on the 
potential of interest [20]. Also, the approximation 
scheme does not yield an exact energy 
eigenvalues of the radial SE [21]. In order to 
circumvent this problem, the centrifugal barrier 
term �(� + 1)ℏ� 2���⁄  in the effective potential of 
the radial SE has to be replaced with the term 

�� +
�

�
�

�

ℏ� 2���� . This modification is known as 

the Langer correction [22]. Sergeenko [23], state 
that the Langer correction regularizes the WKB 
wave function at the origin and ensures correct 
asymptotic behaviour at large radial quantum 
numbers. This implies that the centrifugal term is 
non-vanishing at � = 0. This also makes the WKB 
quantization integral unsolvable for some 
potential. In such case an appropriate 
approximation scheme is required to deal with 
the centrifugal barrier term. 
 

The three-dimensional time-independent SE with 
a reduced mass �  and wave-function �(�, �, �)is 
given as  
 

                (2) 
 

Using the method of separation of variables in 
Eq. (2) we can separate the equation into the 
radial part and the angular part by using the 

transformation �(�, �, �) = 	
�(�)�(�,�)

�
.  

 
With the appropriate separation constant, we will 
obtain the radial SE as 
 

 
���(�)

��� +
��

ℏ� �� −	����(�)��(�) = 0.                     (3) 

 
where the effective potential 	����(�)  is given as  

 

 	����(�) = �(�) +
���

�

�
�
�
ℏ�

����                           (4) 

 
We can rewrite Eq. (3) as  

 

��−
�ℏ�

��
�

�

� �(�) = 2� �� − �(�) −
���

�

�
�
�
ℏ�

���� � �(�). (5) 

 
Equation (5) is a momentum eigenvalue    
equation with the classical momentum obtained 
as 
 

 �(�) =   �2� �� − �(�) −
���

�

�
�
�
ℏ�

���� ��

�

�

.                 (6) 

 
The standard WKB quantization condition [20,23] 
for a two turning point (	��	, �� ) problem is given 
as  

 

∫ �(�)��
��

��
= 	�ℏ �� +

�

�
� . 	�� < � < ��				� =

0, 1, 2 ⋯                                                             (7) 

 
The turning points are gotten from Eq. (6) by 
setting		�(�) = 0.  

 
The semi-classical wave function in the leading ℏ 
approximation has the form  

 

 ����(�) =
�

��(�)
��� �±

�

ℏ
∫�(�)��
	

�.                   (8) 

   
3. ENERGY EIGENVALUE SOLUTION OF 

THE RADIAL SCHRODINGER 
EQUATION 

 
To obtain the energy eigenvalues expression, we 
will substitute the DFP given in Eq. (1) into the 
momentum eigenvalues equation given by               
Eq. (5) 
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 (9) 
 

From Eq. (9), we obtained the classical 
momentum as  
 

�(�) = 2� �� − �� �1 −
�

�����
�
�

−
���

�

�
�
�
ℏ�

���� �        (10) 

 
If we substitute the momentum into the semi-
classical quantization condition given in Eq. (7), 
then we will obtain 

�2� ∫ �� − �� �1 −
�

�����
�
�

−
���

�

�
�
�
ℏ�

���� �

�

�

��
��

��
=

	�ℏ �� +
�

�
� . 	�� < � < ��				� = 0, 1, 2 ⋯        (11) 

 
With the WKB approximation method, Eq. (11) is 
exactly solvable without the centrifugal barrier 
term but not solvable for any arbitrary �-states. 
To find the solution of the SE including the 
centrifugal term, the Pekeris-type approximation 
has been used [3,6,9-11] to deal with the 
centrifugal term of the effective potential, by 
letting  
 

 
�

�� ~	�� ��� +
���

(�����)�
�                                      (12) 

 

Where ��  is a dimensionless constant 	 with a 

value [9] �� =
�

��.����
.  

 
If we substitute   Eq. (12) into (11) we will obtain  
 

                (13) 
 

Now we let � = ��� − 1,  	� ∈ [0, ∞], 
 

 �� = ���� = �(1 + �)��, 
 

By changing variable from �	to	� in Eq. (13), we 
will get  

�2� ∫ 	
��

���
�� − �� �

���

�
�
�

−
���

�

�
�
�
ℏ�������

���

�� �

��
�

�

�
��

��
  

= �ℏ �� +
�

�
�                                                    (14) 

⟹ �
��

�� ∫ 	
��

�(���)
���� − ���� + 2���� − ���

� −
��

��

���
�

�
�
�

��
ℏ������� −

ℏ������
�

�
�
�

��
−

�ℏ������
�

�
�
�

��
�

�

�

  

= �ℏ �� +
�

�
�                                                   (15) 

 
If we collect liked terms of the terms inside the 
squared root of Eq. (15), and simplify, then we 
will have  

 

�
��

�� ∫ 	
��

�(���)
�−��� + �� − �

��

��
 = �ℏ�� +

�

�
�, (16) 

 
 where  

 

 � = 	�� − � +
ℏ���

��
�� +

�

�
�

�

��                       (17) 

 

� = 2��� −
ℏ���

��
�� +

�

�
�

�

                     (18) 

 

 � = ���� +
ℏ���

��
�� +

�

�
�

�
                                 (19) 

 
Equation (16) can further be simplified as  

 

�
���

�� ∫ 	
��

�(���)
�−�� + �� − �

��

��
 = �ℏ�� +

�

�
�, (20) 

 
where  

 

� =
�

�
.                                                             (21) 

 

� =
�

�
                                                               (22) 

 
To evaluate Eq. (20), we make use of the 
transformation 

 
� = 1 + 2�       �	 ∈ (1, ∞)                       (23) 

 
By changing variable from �	  to �  in Eq. (20), 
implies that  

 

�
���

�� ∫ 	
��

����
√−�� + �� − �

��

��
      = �ℏ�� +

�

�
�,       (24) 

 
where  

 
� = 2 + 2�                                                 (25) 

 
� = 1 + 2� + 4�                                     (26) 
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The turning points ��	and	�� are given by  
 

�� = 	
��������

�
                                                 (27) 

 

 �� = 	
��������

�
                                                 (28) 

 
We can write Eq. (24) in a regular form as  
 

�
���

�� ∫ 	
��

����
�(�� − �)(� − ��)

��

��
 = �ℏ �� +

�

�
�,      

(1 < �� < ��)                                                  (29) 
 
With the help of the semi-classical quantization 
integral standard given in Hruska et al. [20] we 
have 
 

 ∫ 	
��

����
�(�� − �)(� − ��)

��

��
= 

	
�

�
��(1 + ��)(1 + ��) − �(�� − 1)(�� − 1) − 2�                                      

(30)     
         
 By comparing Eq. (29) and (30), implies that  
 

�
2��

��
��(1 + ��)(1 + ��) − �(�� − 1)(�� − 1) − 2� 

= 2ℏ �� +
�

�
�                                                    (31) 

 

With the help of Eqs. (27) and (28), Eq. (31) 
becomes  
 

�
���

��
�√1 + � + � − √1 − � + � − 2� = 2ℏ �� +

�

�
�  (32) 

 
Next we substitute �		 and �	  given in the 
respective Eqs. (25) and (26) into Eq. (32) to 
obtain 
 

�
���

��
�√1 + � + � − √� − 1� = ℏ �� +

�

�
�          (33) 

 

Recalling the notations �  and �  given in Eqs. 
(21) and (22), Eq. (33) can be written as  
 

�
���

�� ��1 +
�

�
+

�

�
− �

�

�
− 1� = ℏ �� +

�

�
�        (34) 

Finally, substituting the notations �, �  and �  in 
Eqs. (17-19) into Eq. (34) with some algebraic 
simplifications, we obtained the energy 
eigenvalues equation of the Deng-Fan Potential 
as 
  

���(��(���)�����)

ℏ��� + �� �� +
�

�
�

�

−

�������

ℏ��� + �� +
�

�
�

�

− ���(������)

ℏ��� + �� �� +
�

�
�

�

   
 

= �� +
�

�
�                                               (35) 

 

4. NUMERICAL RESULTS 
 
The energy eigenvalue equation has been found 
with the use of the WKB approximation method. 
The result shows that the WKB approximation 
method does not yield a close form solution for 
either the DFP or the shifted DFP but rather 
produces a transcendental-type or an implicit 
equation. This however is in contrast to the 
analytical work of Amos and coworkers [12] 
where they obtained a closed form solution of     
the shifted DFP with the use of the WKB    
method. In order to test the accuracy of Eq. (35), 
the energy spectra  for the 2p, 3p, 3d, 4p, 4d,               
4f, 5p, 5d, 5f, and 5g quantum states                      
are obtained using MAPLE programme with              
the arbitrary spectroscopic parameters ��,	  ��,	                       
and 	�  as shown in Tables 2-3. Also, Eq. (35)               
can be applied to generate the energy 
eigenvalues of physical systems. To achieve    
this, the ro-vibrational energy spectrum of              
some selected diatomic molecules (HCl, LiH and 
ScH) confined by the DFP are obtained (see 
Table 4). Furthermore we show that the energy 
difference  (��� − ��)  using Eq. (35) is an 
equivalence of the energy eigenvalues for the 
shifted DFP (See Tables 5-6). The 
spectroscopic parameters for the HCl, LiH and 
ScH molecules were taken from Oyewumi et al. 
[3] and tabulated in Table 1. We used the 
conversions ℏ� = 1973.29eVÅ, 1 amu =
931.494028Mev/c�  reported in Falaye et al.        
[24]. 

 
Table 1. Spectroscopic parameters for HCl, LiH and ScH diatomic molecules taken from  

Oyewumi et al. [3] 
 

Molecules ��(��) ��(Å) �(Å��) �(�. � . �) 

HCl 4.619061175 1.2746 1.8677 0.9801045 

LiH 2.515283695 1.5956 1.1280 0.8801221 

ScH 2.25 1.776 1.41113 0.986040 
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Table 2. Comparison of ro-vibrational energy eigenvalues ��� (eV) for the DFP with spectroscopic parameters   �� = �. �� and �� = ��	�. �  
with ℏ = � = � 

 
State � This work NU [3] AIM [9] Numerical [5] Approx. [5] FIM[6] GPS [1] 
2p 0.05 7.860830507 7.860804493 7.860804467 7.8628 7.8606 7.86080 7.860804466 
 0.10 7.953408639 7.953304454 7.953304350 7.95537 7.95247 7.95329  
 0.15 8.045333800 8.045099870 8.045099635 8.04724 8.04322 8.04508 8.045097775 
 0.20 8.136619920 8.136203772 8.136203356 8. 13842 8.13287 8.13613  
 0.25 8.227279483 8.226629167 8.226628516 8. 22892 8.22142 8.22655 8.226613566 
 0.30 8.317325475 8.316389030 8.316388092 8. 31874 8.30889 8.31629  
3p 0.05 10.99778906 10.99776305 10.99776302 10.9998 10.9976 10.99776 10.997762943 
 0.10 11.16266460 11.16256046 11.16256036 11.1647 11.1617 11.16255  
 0.15 11.32448272 11.32424872 11.32424848 11.32647 11.3224 11.32422 11.324240817 
 0.20 11.48325379 11.48283762 11.48283721 11.48513 11.4795 11.48280  
 0.25 11.63898698 11.63833667 11.63833602 11.64068 11.6331 11.63827 11.638278167 
 0.30 11.79169146 11.79075502 11.79075408 9. 67565 11.7833 11.79066  
3d 0.05 10.21600623 10.21598027 10.21598019 10.21651 10.2154 10.21597 10.215980103 
 0.10 10.35364341 10.35353947 10.35353916 10.35409 10.351 10.35350  
 0.15 10.48958790 10.48935439 10.48935369 10.48992 10.4837 10.48928 10.489341948 
 0.20 10.62387907 10.62346374 10.62346249 10.62403 10.6135 10.62334  
 0.25 10.75655542 10.75590641 10.75590446 10.75645 10.7403 10.75571 10.755814653 
 0.30 10.88765606 10.88672151 10.88671869 10.88719 10.8642 10.88644  
4p 0.05 12.49762844 12.49760242 12.49760240 12.4992 12.4974 12.49760 12.497602157 
 0.10 12.69690015 12.69679604 12.69679594 12.69851 12.696 12.69678  
 0.15 12.88858217 12.88834813 12.88834790 12.8901 12.8865 12.88832 12.888327591 
 0.20 13.07266080 13.07224462 13.07224420 13.07400 13.0689 13.07220  
 0.25 13.24912075 13.24847044 13.24846979 13.2501 13.2433 13.24840 13.248318043 
4d 0.05 12.09831623 12.09829027 12.09829019 12.0989 12.0977 12.09828 12.098289743 
 0.10 12.28511332 12.28500942 12.28500910 12.2857 12.2825 12.28498  
 0.15 12.46665293 12.46641937 12.46641867 12.46715 12.4608 12.46635 12.466379229 
 0.20 12.64298290 12.64256756 12.64256631 12.64324 12.6326 12.64244  
4f 0.05 11.82081212 11.82078623 11.82078608 11.8209 11.8195 11.82077 11.820785582 
 0.10 11.99806481 11.99796121 11.99796058 11.9981 11.993 11.99790  
 0.15 12.17192945 12.17169661 12.17169520 12.1718 12.1604 12.17156 12.171646579 
 0.20 12.34248626 12.34207217 12.34206967 12.3421 12.3221 12.34182  
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State � This work NU [3] AIM [9] Numerical [5] Approx. [5] FIM[6] GPS [1] 
5p 0.10 13.54224659 13.54214250 13.54214240 13.5434 13.5413 13.54213 13.542133643 
 0.20 13.92940251 13.92898633 13.92898591 13.9301 13.9257 13.92894  
5d 0.10 13.30690079 13.30679690 13.30679659 13.3075 13.3043  13.306777642 
 0.20 13.69307930 13.69266395 13.69266270 13.6931 13.6827   
5f 0.10 13.14770129 13.14759771 13.14759709 13.1478 13.1426  13.147569396 
 0.20 13.53385635 13.53344225 13.53343975 13.5333 13.5134   
5g 0.10 13.03807936 13.03797622 13.03797516 13.0379 13.0296  13.037943909 
 0.20 13.42752509 13.42711266 13.42710850 13.42667 13.3938   

 

Table 3. Comparison of ro-vibrational energy eigenvalues ��� (eV) for the DFP with spectroscopic parameters   �� = �. �� and �� = ��	�. �  
with ℏ = � = � 

 

State � This work NU [3] AIM [9] Numerical [5] Approx. [5] GPS [1] 
2p 0.05 4.140913461 4.140887263 4.140887237 4.14208 4.14068 4.140887222 
 0.10 4.219284120 4.219180128 4.219180023 4.2204 4.21835  
 0.15 4.297627357 4.297393199 4.297392964 4.2987 4.29552 4.297390050 
 0.20 4.375962693 4.375546508 4.375546092 4.3769 4.37221  
 0.25 4.454309954 4.453659654 4.453659003 4.4551 4.44845 4.453636191 
 0.30 4.532688242 4.531751791 4.531750853 4.5332 4.52425  
3p 0.05 7.532817713 7.532791561 7.532791535 7.5350 7.53258 7.532791457 
 0.10 7.724868277 7.724764274 7.724764169 7. 7271 7. 72393  
 0.15 7.915412795 7.915178655 7.915178421 7. 9177 7. 9133 7.915170747 
 0.20 8.104456816 8.104040627 8.104040211 8.1066 8.10071  
 0.25 8.292004474 8.291354169 8.291353518 8.2941 8.28615 8.291296319 
 0.30 8.478057760 8.477121312 8.477120373 8.4799 8.46962  
3d 0.05 5.739777356 5.739751228 5.739751150 5.7404 5.73913 5.739751067 
 0.10 5.845874062 5.845770281 5.845769968 5.8465 5.84327  
 0.15 5.950911804 5.950678133 5.950677430 5.9515 5.94505 5.950665807 
 0.20 6.054948991 6.054533598 6.054532348 6.0553 6.04453  
 0.25 6.158044321 6.157395321 6.157393368 6.1582 6.14177 6.157304825 
 0.30 6.260256322 6.259321745 6.259318933 6.2601 6.23682  
4p 0.05 9.613039208 9.613013087 9.613013061 9.6156 9.6128 9.613012874 
 0.10 9.883627711 9.883523698 9.883523594 9.8862 9.88269  
 0.15 10.14878985 10.14855572 10.14855549 10.1514 10.1467 10.148539652 
 0.20 10.40847394 10.40805775 10.40805734 10.4111 10.4047  
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State � This work NU [3] AIM [9] Numerical [5] Approx. [5] GPS [1] 
 0.25 10.66262419 10.66197388 10.66197323 10.665 10.6568 10.661857334 
4d 0.05 8.493369573 8.493343486 8.493343408 8.4948 8.49272 8.493343095 
 0.10 8.707214778 8.707110984 8.707110672 8. 7087 8.70461  
 0.15 8.918041256 8.917807599 8.917806896 8. 9194 8.91218 8.917778045 
 0.20 9.125920478 9.125505093 9.125503844 9.1272 9.11551  
4f 0.05 7.434731843 7.434705812 7.434705654 7.4351 7.43346 7.434705351 
 0.10 7.586522280 7.586418806 7.586418181 7. 5868 7.58142  
 0.15 7.735965234 7.735732273 7.735730867 7.7361 7.72448 7.735697652 
 0.20 7.883171622 7.882757512 7.882755012 7.8831 7.86276  
5p 0.10 11.30217646 11.30207244 11.30207233 11.3047 11.3012 11.302066518 
 0.20 11.91363994 11.91322375 11.91322333 11.9161 11.9099  
5d 0.10 10.52018988 10.52008608 10.52008576 10.5219 10.5176 10.520074121 
 0.20 11.06978698 11.06937161 11.06937036 11.0713 11.0594  
5f 0.10 9.796761519 9.796658033 9.796657408 9.7975 9.79166 9.796641911 
 0.20 10.27345118 10.27303707 10.27303457 10.2738 10.253  
5g 0.10 9.152326416 9.152223355 9.152222313 9.1524 9.14389 9.152206082 
 0.20 9.553281943 9.552869479 9.552865312 9.5528 9.51954  

 
Table 4. Comparison of energy eigenvalues ��� (eV) of the DFP for the diatomic molecules HCl, LiH, and ScH. The spectroscopic parameters are 

taken from Oyewumi et al. [3] 
 

State HCL LiH ScH 
� � This work NU [3] This work NU [3] This work  NU [3] 
0 0 0.2021391349 0.201984174 0.1033975959 0.103334650 0.1049386464 0.104850694 
0 1 0.2050090357 0.204854248 0.1052996075 0.105236729 0.1064375371 0.106349671 
1 0 0.5909027875 0.590747827 0.3020689011 0.302005955 0.3063344892 0.306246538 
1 1 0.5936924013 0.593537612 0.3039015316 0.303838653 0.3077919933 0.307704129 
2 0 0.9601660040 0.960011044 0.4907488062 0.490685861 0.4970386372 0.496950687 
2 1 0.9628763805 0.962721591 0.4925136380 0.492450759 0.4984552600 0.498367397 
2 2 0.9682961369 0.968141645 0.4960417607 0.495978997 0.5012880020 0.501200316 
3 0 1.310182826 1.310027865 0.6696639648 0.669601019 0.6771811469 0.677093198 
3 1 1.312814994 1.312660203 0.6713625275 0.671299648 0.6785573840 0.678469522 
3 2 1.318078347 1.317923855 0.6747581514 0.674695388 0.6813093620 0.681221677 
3 3 1.325970803 1.325816775 0.6798477705 0.679785205 0.6854361001 0.685348677 
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State HCL LiH ScH 
� � This work NU [3] This work NU [3] This work  NU [3] 
4 0 1.641202203 1.641047243 0.8390335090 0.838970564 0.8468896201 0.846801673 
4 1 1.643757170 1.643602379 0.8406672816 0.840604402 0.8482259576 0.848138097 
4 2 1.648866136 1.648711644 0.8439333635 0.843870601 0.8508981441 0.850810460 
4 3 1.656527052 1.656373023 0.8488287687 0.848766203 0.8549052130 0.854817791 
4 4 1.666736911 1.666583499 0.8553490912 0.855286782 0.8602456962 0.860158632 
5 0 1.953468116 1.953313156 0.9990693464 0.999006401 1.006289259 1.006201313 
5 1 1.955946871 1.955792078 1.000639759 1.00057688 1.007586174 1.007498315 
5 2 1.960903424 1.960748932 1.003779159 1.003716397 1.010179523 1.010091841 
5 3 1.968335762 1.968181734 1.008484637 1.008422072 1.014068354 1.013980933 
5 4 1.978240925 1.978087513 1.014751899 1.014689589 1.019251220 1.019164157 
5 5 1.990614950 1.990462308 1.022575209 1.022513206 1.025726220 1.025639693 

 
Table 5. Comparison of the shifted DFP eigenvalues −(��� − ��) in eV for HCl molecule for various vibrational � and rotational � quantum numbers 
 

� � This work  AP [10] NU [10] AIM [9] GPS [1] 
0 0 4.416922040 4.41705 4.41705 4.417077001 4.4170494559 
 5 4.373910853 4.37843 4.37403 4.374065784  
 10 4.259606994 4.27591 4.25973 4.259761948  
5 0 2.665593059 2.66574 2.66574 2.665748019 2.6657422481 
 5 2.628446225 2.63411 2.62859 2.628601192 2.6341202067 
 10 2.529750732 2.55027 2.52989 2.529905688 2.5502777586 
7 0 2.096369842 2.09652 2.09652 2.096524802 2.0965250897 
 5 2.061465054 2.06768 2.06161 2.061620020 2.0676862795 
 10 1.968737082 1.99127 1.96888 1.968892038 1.9912752181 
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Table 6. Comparison of the shifted DFP eigenvalues −(��� − ��) in eV for LiH molecule for 
various vibrational � and rotational � quantum numbers 

 
� � This work AP [10] NU [10] AIM [9] GPS [1] 
0 0 2.411886099 2.41195 2.41195 2.411949045 2.41193395635 
 5 2.383413301 2.38458 2.38348 2.383476249  
 10 2.308084518 2.31229 2.30815 2.308147473  
5 0 1.516214349 1.51628 1.51628 1.516277294 1.5162733601 
 5 1.492708486 1.49429 1.49278 1.492771433 1.4942942044 
 10 1.430551348 1.43627 1.43062 1.430614300 1.4362755837 
7 0 1.223330593 1.22340 1.22340 1.223393538 1.2233927653 
 5 1.201661396 1.20344 1.20173 1.201724343 1.2034455538 
 10 1.144375642 1.15083 1.14444 1.144438594 1.1508305492 

 

5. CONCLUSION 
 
In this paper, the energy spectrum of the radial 
SE generated by the DFP has been obtained by 
using the WKB approximation method. The 
Pekeris type approximation scheme was used to 
deal with the centrifugal barrier term of the 
effective potential. The WKB method yields an 
implicit energy equation. This equation is applied 
in generating energy spectrum for the non-
physical and also for real molecular systems 
such as HCl LiH and ScH diatomic molecules. In 
comparison with the numerical eigenvalues 
obtained with MATHEMATICA package, the 
WKB approximation method produces improved 
results over the results obtained by other 
analytical methods in the literature. 
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