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Abstract
In this paper we investigate how gradient-based algorithms such as gradient descent (GD),
(multi-pass) stochastic GD, its persistent variant, and the Langevin algorithm navigate non-convex
loss-landscapes and which of them is able to reach the best generalization error at limited sample
complexity. We consider the loss landscape of the high-dimensional phase retrieval problem as a
prototypical highly non-convex example. We observe that for phase retrieval the stochastic variants
of GD are able to reach perfect generalization for regions of control parameters where the GD
algorithm is not. We apply dynamical mean-field theory from statistical physics to characterize
analytically the full trajectories of these algorithms in their continuous-time limit, with a warm
start, and for large system sizes. We further unveil several intriguing properties of the landscape
and the algorithms such as that the GD can obtain better generalization properties from less
informed initializations.

1. Introduction

Algorithms based on gradient-descent (GD) are the workhorses of many machine learning applications
involving the optimization of a high-dimensional non-convex loss function. In particular, stochastic GD
(SGD) has proved to be extremely efficient in navigating complex loss landscapes. However, despite its
practical success, the theoretical understanding of the reasons behind the good generalization properties of
the algorithm remains sparse. Empirical evidence suggests that the interplay between the optimization
algorithm and the landscape is crucial to achieve good performances. It has been shown, for instance, that
the loss landscape of state-of-the-art deep neural networks is far from simple: adversarial initialization can
trap SGD into global minima with poor generalization [1]. Therefore, understanding the dynamics of SGD is
paramount in machine learning and optimization.

Investigating the dynamics of SGD and the role of the stochasticity is consequently an active direction of
research. While the practical success of SGD compared to GD is rather generally accepted, it is still far from
clear what is really the key factor responsible for this. Cases where the superiority of SGD with respect to GD
was shown theoretically are sparse, but see e.g. [2, 3]. One hurdle that appears in theoretical analysis is how
to properly define the continuous limit of SGD. In the limit of learning rate going to zero, SGD is considered
to lead to the gradient-flow limit, see e.g. [4], thus the difference with gradient flow disappears. For learning
rate kept finite, a line of works characterizes SGD as a discretization of a continuous-time Langevin-type
process [4–7]. The dependence of the variance of the noise on the current-weights and time is, however, not
given in a closed form in these works and thus difficult to analyze explicitly. Another line of work challenged
the central-limit-theorem assumption of finite noise-variance behind these works by proposing the
stochastic noise is heavy-tail distributed [8]. In our work, we instead consider a variant of the stochastic GD
called persistent-SGD, as recently defined in [9]. Persistent-SGD has a well define flow limit η → 0 and our
analysis thus does not require other assumptions about the nature of stochastic noise.
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Learning theory and computer science usually proceed in a manner that makes minimalistic assumptions
on the data distribution. Statistical physics usually takes a complementary way of understanding well
prototypical settings that capture the essence of the question. This is the path we take in this paper and
compare the behavior of GD-based algorithms on a prototypical choice of data and learning model leading
to high-dimensional and non-convex landscape. Specifically, we consider the problem of phase retrieval
where the task consists in recovering an unknown signal from a set of observations—the absolute value of
the signal’s projections onto measurement vectors. This problem appears in a series of applications,
including optics [10, 11], acoustics [12], and quantum mechanics [13]. We will consider the problem where
the measurements are i.i.d. Gaussian vectors and the number of measurementsM is only constant times the
dimensionality of the signal N, α=M/N. We consider the high-dimensional limit where both the number of
training samples and the input dimensions go to infinity, at ratio α of order one, typically 2–3. In this work
we view the phase retrieval as a prototypical example of a simple single-layer neural network where the
measurement vectors correspond to the input samples, and the signal corresponds to the teacher-network
weights. The measurements then correspond to the output labels. In the spirit of learning with neural
networks we are interested in the corresponding generalization error, i.e. the ability to predict labels for
previously unseen samples. We stress that it is not the goal of this work to provide a competitive algorithm
for the phase retrieval. In the setting considered in this paper (i.e. i.i.d. Gaussian inputs and teacher produced
labels) it was conjectured that the approximate message passing algorithm (AMP) cannot be beaten in the
large size limit [15]. Instead, the main goal of this paper is to study the performance of gradient-based
algorithms and the loss landscape of the phase retrieval problem serves us as a high-dimensional intrinsically
non-convex prototype having multiple spurious minima and only one solution (with a Z2 symmetry)
leading to perfect generalization error.

We note that the landscape of phase retrieval problem is somewhat different than the one of deep neural
networks, that are highly overparametrized and present entire regions of solutions with zero training error
and a good generalization. Consequences of this difference and thus relevance of the present work for
learning with state-of-the art neural networks is left for future work. Instead the present work investigates the
performance of gradient-based algorithms in an archetypal non-convex high-dimensional setting providing
a benchmark to assess the role played by stochasticity in non-convex optimization problems in general.

Our main contributions can be summarized as follows.

• We perform a series of numerical simulations in order to assess the generalization performance of the GD,
multi-pass stochastic GD, its persistent-SGD version, and the Langevin algorithm as a function of the con-
trol parameters (mini-batch size, persistence time, temperature). Our experimental findings reveal that in
the considered problem stochasticity is beneficial for generalization. We also shed light on the qualitative
difference between the sources of noise in the algorithms.

• We investigate the role of the warm start and we find that GD can be trapped very close to the signal, while
perfect recovery can be reached starting from less informed initializations.

• We then apply dynamical mean-field theory (DMFT) from statistical physics to provide an analytic charac-
terization of the full trajectory of the continuous limit of the GD, persistent-SGD and Langevin algorithms
in the high-dimensional limit where the number of samples and dimension are both large, but their ratio
α= O(1), at times linear in the dimension. We use the theoretical curve as a baseline to show that the
observed behavior is not due to finite-size or finite-learning-rate effects.

Further related works
In this paper, we consider the phase retrieval problems with Gaussian measurements and signal in the
high-dimensional limit. The loss landscape complexity of this problem was studied using the Kac-Rice
method in [14], however, bringing this analysis to concrete results seemed to be technically challenging.
Signal recovery in this problem was studied from the information-theoretic point of view and using AMP
algorithms that are considered optimal among all polynomial algorithms for this case [15–17]. In particular
it is known that while information-theoretically zero generalization error can be reached for α > 1, the AMP
algorithm is able to do so for α > 1.13.

Performance of GD for phase retrieval is worse than the one of AMP in terms of sample complexity and
also harder to analyze. In practice, one often uses GD initialized spectrally [18], i.e. in the eigenvector
corresponding to the leading eigenvalue of a suitable matrix constructed from the labels and the
measurement vectors [19]. Such spectral initialization is also motivating our use of warm start that is
mimicking it. Concerning randomly initialized GD, [20] showed that GD needs a training set of size
∼ O(Npoly(logN)) to at each time step. If we introduce other works in computer science consider GD-type
algorithms for phase retrieval requiring O(Npoly(logN)) samples [25]. The analysis carried out in [21]
suggests that the randomly-initialized algorithm can achieve perfect generalization with much lower linear
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sample complexity. Authors of [23] then show that linear (with unspecified large constant) sample
complexity is achievable with randomly initialized GD for a suitably chosen loss function. Finally [24] have
shown that over-parametrization can bring the sample complexity of randomly initialized GD down to
α= 2. While in the present work we will not be considering overparametrization, we are interested in
performance of gradient-based algorithms for similarly small sample complexity α. We will be investigating
several gradient-based algorithms and judge their performance by the number of samples they require for
recovery of the signal. The fewer samples the better. This is why we focus on the regime of α= O(1).

The online SGD for phase retrieval has been studied, e.g. in [26]. Results for (multi-pass) stochastic GD
in phase retrieval are not known up to our best knowledge. A theoretical understanding of the performance
of (multi-pass) SGD at small sample complexity requires taking into account the full trajectory of the
algorithm which is challenging and done in the present paper.

2. The model and the data

We study the supervised learning problem of recovering an N − dimensional real-valued vector:

w(0) = {w(0)
1 , . . . ,w(0)

N } from a set ofM=αN real-valued noiseless measurements ξµ = {ξµ1 , . . . , ξ
µ
N} of

dimension N. We consider the signal w(0) to be extracted with the uniform measure on the N-dimensional
hyper sphere |w(0)|2 = N. We take the components of the vectors ξµ to be i.i.d. Gaussian random variables

with zero mean and unit variance. The non-linear measures of the signal vector w(0) are encoded in the
labels:

yµ =

∣∣∣∣ 1√
N
ξµ ·w(0)

∣∣∣∣, ∀µ= 1, . . . ,M. (1)

We note that in applications the complex-valued phase retrieval is more relevant, yet for the purpose of the
present paper, which is studying the performance of the gradient-based algorithms, the real-valued version is
sufficiently rich. We consider learning with a single-layer neural network by the minimization of the
empirical risk:

L (w) =
M∑

µ=1

v(hµ;h
(0)
µ ), (2)

where v is a cost function having a global minimum at hµ = h(0)µ and we have defined:

hµ =
1√
N
ξµ ·w, h(0)µ =

1√
N
ξµ ·w(0). (3)

In what follows we consider a loss of the form:

v(h,h0) =
1

4
(h2 − h20)

2. (4)

However, the analytic derivation of the DMFT can be carried out for every twice-differentiable function v.

Note that the empirical risk depends on the labels yµ only through h(0)µ . We consider a particular
regularization of the weights where the training dynamics of w(t) is constrained on the hyper-sphere. In
section C, we show that our results hold in a qualitative same manner for the more standard ridge
regularization.

3. The analyzed algorithms

In this section we define the GD-based algorithms under consideration and their continuous-time limit that
will then be studied using dynamical mean-field theory. The discrete dynamics of full-batch GD is given by
the weights update:

wi(t+ η) = wi(t)− η [∂wiL (w)+ ν̂(t)wi(t)]

= wi(t)− η

[
αN∑
µ=1

∂1v(hµ;h
(0)
µ )

1√
N
ξµi + ν̂(t)wi(t)

]
,

(5)

for all i= 1, ...,N, where η > 0 is the discrete time step and ∂1v(h;h0) indicates the derivative of the loss
function with respect to its first argument. We have introduced a Lagrange multiplier ν̂(t) to enforce the
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spherical constraint on the weights at each time step. This is equivalent to a projection on the sphere at each
iteration, which is how we implement the numerical simulations. In the following, we analyze different ways
to add stochasticity to the dynamics.

3.1. Multi-pass stochastic GD dynamics
We study multi-pass stochastic GD, where the samples are reused multiple times during training. The
mini-batches are sampled with replacement with size B= bM, b ∈ (0,1] at each time step. If we introduce a
set of binary variables sµ(t) ∈ {0,1}, µ= 1, ...,M to select which samples are used compute the gradient,
then in the large N limit the vanilla-SGD algorithm described above is equivalent to draw:

sµ(t) =

{
1 w.p. b
0 otherwise

(6)

independently at each time step. However, the continuous-time limit η → 0 different from the gradient-flow
is not well-defined in this case. As done in [9], in order to consider the continuous-time dynamics, we define
a discrete-time process for the variables sµ(t) that has a well-defined continuous-time limit. We divide the
time interval in finite steps of size η and we define the following persistent version of the stochastic GD
algorithm:

sµ(t= 0) =

{
1 w.p. b
0 otherwise

,

Prob(sµ(t+ 1) = 1|sµ(t) = 0) = 1−Prob(sµ(t+ 1) = 0|sµ(t) = 0) =
η

τ
,

Prob(sµ(t+ 1) = 0|sµ(t) = 1) = 1−Prob(sµ(t+ 1) = 1|sµ(t) = 1) =
1− b

bτ
η.

(7)

In this case, each pattern stays out of the training mini-batch for a typical time τ , that we will refer to as the
persistence time. The stochastic gradient flow (SGF) dynamics is obtained by taking the η → 0 limit of
equation (7):

∂wi(t)

∂t
=− 1

b

αN∑
µ=1

sµ(t)∂1v(hµ(t);h
(0)
µ )

1√
N
ξµi − ν̂(t)wi(t), (8)

for all i= 1, ...,N, where we have rescaled the gradient by the fraction of samples in the mini-batch. Note that,
in this setting, there are two parameters controlling the stochasticity of the algorithm: the mini-batch size b
and the persistence time τ . The standard SGD algorithm is recovered from (7) by setting τ = η/b and finite
learning rate η. In appendix D, we show by numerical simulations with decreasing learning rate that the
η → 0 limit of the persistent SGD algorithm is different than GD, while this is not the case for standard SGD.

3.2. Langevin dynamics
A different kind of stochastic dynamics is provided by the Langevin algorithm at temperature T, whose flow
limit is defined by the following system of stochastic differential equations:

∂wi(t)

∂t
=−

αN∑
µ=1

∂1v(hµ(t);h
(0)
µ )

1√
N
ξµi + ςi(t)− ν̂(t)wi(t). (9)

for all i= 1, ...N. The random vector ς(t) is Gaussian white noise:

⟨ςi(t)⟩= 0, ∀i= 1, ...N,

⟨ςi(t)ςj(t ′)⟩= 2Tδijδ(t− t ′), ∀i, j= 1, ...N.
(10)

Note that by setting b = 1 in equation (8) or T= 0 in equation (9) we recover the full-batch gradient-flow
algorithm.

3.3. Warm initialization
In order to explore the energy landscape more thoroughly we consider here, next to the usual random
initialization, informed/warm initializations. We initialize the weight vector as follows:

w(t= 0) =m0w
(0) + cz ∈ RN, (11)
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wherem0 > 0 is (on average) the initial projection of the weight vector onto the signal, i.e. the average
magnetization:

m(t) =
1

N
w(t) ·w(0), (12)

at time t= 0. The components of z are i.i.d. standard Gaussian variables and the coefficient c is such that
|w(t= 0)|2 = N. Note that the warm initialization breaks the Z2 symmetry of the problem. Therefore, in the
followingm(t)∈(0, 1], ∀t. We stress here that while in learning we are usually concerned with the test
error/performance, in the setting considered here (under the spherical constraint) the test error is monotonic
in the magnetization, see appendix B. Thus, in the following we directly use the magnetization as a measure
of accuracy.

This warm initialization can be thought of as a proxy for algorithms where GD (or its variants) is run
after the weights have been spectrally initialized, i.e. using the principal eigenvalue of a given pre-processing
matrix as initial guess for the weights. Spectrally initialized GD is used in a range of applications, see e.g.
[18], as well as studied theoretically, see e.g. [27]. Warm initialization is formally needed to obtain
non-trivial results for times linear in the dimension. Indeed, because of the Z2 symmetry we would need
time at least logarithmic in dimension in order to escape the space of weights uncorrelated with the solution.
This was referred to as the ‘escape from mediocrity’ in [28].

4. Characterization of the dynamics

In this section we provide a closed-form characterization of the flow dynamics of the persistent-SGD and
Langevin algorithms presented above in the high-dimensional limit. To this end, we apply dynamical
mean-field theory from statistical physics [29–31]. This analytic framework is useful to study the stochastic
evolution of large systems of interacting degrees of freedom [32–34]. DMFT has been rigorously proven in
some specific cases [35], but not yet in the present one. Here we present the main analytic results, more
details are provided in appendix A. The derivation follows the line of [9, 36], for a different data structure
and loss function. We also need to include the spherical constraint and Langevin noise in the dynamics. We
consider the high-dimensional limit N→∞, at fixed sample complexity α=M/N, mini-batch fraction b ,
persistent time τ and temperature T. For simplicity, we regroup the flow dynamics of multi-pass SGD (8)
and Langevin (9) in the same equation:

∂wi(t)

∂t
=−ν̂(t)wi(t)+ ςi(t)

− 1

b

αN∑
µ=1

sµ(t)∂1v(hµ(t);h
(0)
µ )

1√
N
ξµi . (13)

The performance of the algorithms as a function of training time is encoded in the magnetizationm(t)
defined in equation (12), that is equal to 1 for perfect recovery of the signal. In the high-dimensional limit,
we obtain that the evolution of the magnetization is described by the following deterministic differential
equation:

∂tm(t) =−ν̂(t)m(t)−µ(t), m(0) =m0 , (14)

where

ν̂(t) =−α

b
⟨h̃(t)s(t)∂1v(h̃(t);h0))⟩+T,

µ(t) =
α

b
⟨s(t)h0 ∂1v(h̃(t);h0)⟩,

h̃(t)≡ h(t)+ h0m(t).

(15)

The brackets ⟨·⟩ stand for the average over different sources of noise:

• the binary variable s(t), distributed as in equation (7) for η → 0;
• the standard Gaussian variable h0 ∼ N (0,1);
• the effective stochastic process for the typical gap h(t) defined in equation (3).

The evolution of (t) is given by:

∂th(t) =− (ν̂(t)+ δν(t))h(t)− 1

b
s(t)∂1v(h̃(t);h0)+

ˆ t

0
dt ′MR(t, t

′)h(t ′)+χ(t), (16)
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with initial condition:

P(h(0)) =
1√

2π(1−m2
0)
e−h(0)2/2(1−m2

0). (17)

The dynamical noise χ(t) in equation (16) is Gaussian distributed, with:

⟨χ(t)⟩= 0,

⟨χ(t)χ(t ′)⟩= 2Tδ(t− t ′)+MC(t, t
′).

(18)

The expressions for the kernelsMC(t, t ′) andMR(t, t ′) and the auxiliary function δν(t) are given by:

MC(t, t
′) =

α

b 2
⟨s(t)s(t ′)∂1v(h̃(t);h0)∂1v(h̃(t ′);h0))⟩,

MR(t, t
′) =

α

b 2

δ

δP(t ′)
⟨s(t)∂1v(h̃(t);h0)⟩

∣∣∣∣
P=0

,

δν(t) =
α

b
⟨s(t)∂2

1v(h̃(t);h0)⟩,

(19)

where P(t ′) is a linear perturbation applied to h at time t ′ and then set to zero, that we only need to define
MR(t, t ′). Overall, we obtain that the performance of the algorithms over time is described by a system of
integro-differential equations that must be solved numerically in a self-consistent way. As done in [9], we
start from a simple guess of the kernels and the auxiliary functions and we compute many realizations of the
curve h(t) in equation (16). We use these curves to update the kernels and we iterate the procedure until
convergence. The details are relegated to appendix A.1. A first implementation of this procedure was
proposed in [37, 38]. Once the stochastic process defined in equation (16) has reached convergence, we can
compute other quantities of interest. For instance, we can track the evolution of the average training loss
defined in equation (2) in the high-dimensional limit:

ℓ(t) = ⟨v(h̃(t);h0)⟩. (20)

These equations provide a dimension-independent way to track the performance of the algorithm in the
limit of high-dimensions and infinitesimal learning rate as a function of time. Indeed, since the solution of
the problem is planted and the measurements are noiseless, in this case zero training loss corresponds to zero
generalization error.

Note that this formalism allows to study the dynamics of the corresponding algorithms without any
approximation on the distribution of the noise introduced by stochasticity. This is at variance with the works
that consider SGD as a noisy approximation of GD invoking variants of central limit theorem [4–8].

5. Results for the dynamics

In this section, we discuss our findings on the dynamics of the gradient-based algorithms under
consideration. We compare the results from simulations to the DMFT theoretical prediction. The DMFT is
valid in the continuous flow limit and in the high-dimensional limit. The simulations are performed for sizes
large enough and learning rate small enough so that this limit is closely approached. This analysis sheds light
on how stochasticity helps to navigate the loss landscape and on the impact of the different control
parameters, notably the batch size b , temperature T, and persistence time τ , on the test performance.

5.1. The trapping landscape
Figure 1 illustrates the performance of GD starting from three increasing initializations:m0 = 0.5 (left),
m0 = 0.65 (center), andm0 = 0.8 (right) at α= 2, i.e. number of samples twice the dimension. In the three
lower panels, we plot the magnetization for different seeds—corresponding to different realizations of the
noise vector z defined in equation (11)—with a dataset, i.e. the inputs and labels, drawn at random and
fixed. The evolution of different instances from simulations is thus probing the very same loss-landscape, the
figure then highlights the complexity of the landscape. First, we observe that a warm start is not enough to
reach perfect recovery. This suggests that the landscape is very rough, with multiple local minima at all
heights. Indeed, we see that GD can get stuck even very close to the global minimum atm= 1. From the right
panel of the figure, we see that at time t∼ 10 all seeds initialized with magnetizationm0 = 0.8 have achieved
perfect recoverym= 1. However, the left and center panels show that some seeds starting atm0 < 0.8 and
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Figure 1. Upper. Average magnetization as a function of training time for the full-batch GD/flow algorithm. We consider
α=M/N= 2 and three different initializations:m0 = 0.5 (left),m0 = 0.65 (center),m0 = 0.8 (right). The grey dots represent
numerical simulations (N= 1000, η= 0.01), averaged over 1000 seeds (generating a new dataset and signal for each seed). The
full red line marks the theoretical prediction from DMFT obtained in the high-dimensional limit of gradient-flow. Bottom.We
fix the landscape by fixing the dataset and we show 50 instances of the magnetization as a function of time, for different
realizations of the noise vector z defined in equation (11), atm0 = 0.5 (left),m0 = 0.65 (center),m0 = 0.8 (right). For visibility
purposes, we plot t+ η on the x-axes.

reachingm= 0.8 only at t> 0 can get stuck for long times. Hence we deduce that the topological complexity
of the landscape is such that some regions of the weights space can be trapping even if they are closer to the
signal than others that do not trap the dynamics. We observe that a more informed initialization does not
guarantee a better generalization. This can be further seen comparing the left panel to the central one.
Indeed, we find that some seeds initialized atm0 > 0.6 are stuck atm< 1 at time t∼ 10, while some seeds
starting atm0 < 0.6 have already reached perfect generalization. Consequently, in this regime of parameters,
the full trajectory of the algorithm is crucial to achieve perfect recovery.

In the upper panels of figure 1, we compare the average magnetization from numerical simulations at
finite system size and finite learning rate (grey dots) to the theoretical prediction (red line) obtained by
integrating the DMFT Equations derived in the high-dimensional continuous limit. In this case, we generate
a new dataset for each simulations in order to remove sample-to-sample fluctuations. We find a very good
agreement between asymptotic theory and the average from simulations already for the used system sizes and
learning rates, indicating that the observed behavior is not a feature of finite size or finite learning rate
effects. Additional simulations supporting this evidence are left to appendix D.

5.2. Multi-pass SGD outperforms GD
Figure 2 shows the average magnetization—defined in equation (12)—and the average training
loss—defined in equation (2)—as a function of time for full-batch GD, multi-pass SGD and its persistent
version. In the case of multi-pass SGD, we sample (with replacement) minibatches of size bM at each time
step. In figure 3, we depict different instances of the dynamics, corresponding to different realizations of the
dataset and the noise vector z (equation (11)). We find that SGD and persistent-SGD with τ = 1 outperform
GD in recovering the hidden signal. Indeed, at time scales at which persistent-SGD has already reached
magnetization one and zero loss, GD is stuck in regions of poorer generalization. The average magnetization
of SGD lies between the two. Therefore, a finite batch size is beneficial for the performance. Furthermore, the
behavior of the curves for different seeds unveils an important role played by the persistence time. Indeed,
while the evolution of the magnetization for GD is characterized by long plateaus alternated by sudden
jumps, persistent-SGD is not stuck in the same region for long times. Again, the behavior of SGD is
intermediate between the two: we see from the central panel of figure 3 that the disappearance of the plateaus
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Figure 2. Average magnetization (left) and average training loss (right) as a function of training time, at fixed α=M/N= 3,
initial magnetizationm0 = 0.2, input dimension N= 1000, learning rate η= 0.01. We show the performance of full-batch
gradient descent (red line), multi-pass vanilla SGD at b = 0.5 (dotted green line), and persistent SGD at τ = 1, b = 0.5 (dashed
blue line). The averages are computed over 500 seeds (generating a new instance for each seed). At time t= 1000, the percentages
of seeds that have reached training loss below 10−7 are: 9% (GD), 30% (SGD), 99% (persistent-SGD). For visibility purposes, we
plot t+ η on the x-axes.

Figure 3.We show 50 instances of the magnetization as a function of training time for GD (left), SGD at b = 0.5 (center) and
persistent-SGD at b = 0.5, τ = 1 (right). All other parameters are as in figure 2. For each seed, a new instance is generated. For
visibility purposes, we plot t+ η on the x-axes.

is a feature of a finite persistence time. These findings suggest that the interplay of the finite batch size and
the persistence time is crucial to achieve the optimal performance. Additional simulations supporting this
numerical evidence are provided in appendix D.

5.3. The role of the noise
Figure 4 illustrates the effect of different sources of stochasticity on the generalization performance. In
particular, we compare the role played by the white noise at temperature T in the Langevin algorithm to the
double source of noise in the SGD algorithm: the finite batch size b and the persistence time τ . In the left
panel, we depict the dependence of the SGD algorithm on the batch size, at fixed persistence time. We find
that the generalization performance is non-monotonic in the batch size and the optimal value is attained at
intermediate b . Therefore, at variance with what observed in deep neural networks trained on real datasets
[6, 40], in our case we obtain that the optimal batch size is an extensive fraction of the total number of
samples. The central panel displays the (median) performance of SGD for different values of the persistence
time τ , at fixed batch size. For times t≤ τ , the samples used to compute the gradient (on average) do not
change, and thus the dynamics presents plateaus. However, as soon as t> τ , the mini-batch is refreshed. This
results in a sudden increase in performance at times t∼ τ , that becomes more visible the larger τ . Moreover,
we observe a non-monotonic behavior of the performance as a function of τ . On the one hand, increasing τ
shifts the final plateau at larger times, delaying the recovery of the signal. On the other hand, if the
persistence time is too small, the dynamics gets trapped close to the signal, displaying plateaus followed by
sudden jumps similarly as for GD (see Figure 3). There is therefore an intermediate range of persistence
times τ for which the performance is the best (better than vanilla SGD). Since the literature often compares
the SGD noise to the Langevin noise [4–7, 39] we compare here to the performance achieved by the Langevin

8
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Figure 4.Median magnetization (above) and median loss (below) as a function of training time, at fixed α=M/N= 3,
initializationm0 = 0.2, dimension N= 1000, learning rate η= 0.01. The median is computed over 250 seeds, drawing a new
dataset, signal and initialization for each seed. For visibility purposes, we plot t+ η on the x-axes. Left.We show persistent-SGD
for increasing values of batch size b = 0.01,0.05,0.1,0.3,0.9,0.95,1 and fixed persistence time τ = 1. In the case b= 0.1, the
learning rate has been reduced to η= 0.005, for b = 0.01,0.05 we have used η= 0.0025. Center.We show persistent-SGD at
increasing values of persistence time τ = 0.05, 0.1, 0.5, 1, 2, 5 and vanilla SGD, both algorithms at fixed batch size b = 0.5. Right.
We show the Langevin algorithm at increasing temperatures T= 0 (GD), 0.1, 0.5, 1, 2, 5, 10. At time t= 700 the temperature is set
to zero.

algorithm at fixed temperature. The right panel of figure 4 depicts the performance of the Langevin
algorithm for different values of temperature T. At large times (t= 700 in the figure) the temperature is
switched to zero. We find that the best performance is again reached for intermediate values of the
temperature T. We underline the qualitative difference between the effective noise introduced by multi-pass
SGD and the white noise of Langevin algorithm. The variance of the noise in Langevin is fixed by the
temperature, therefore—in order to reach a minimum—an annealing protocol must be implemented and
optimized. In contrast, the noise introduced by SGD is automatically reduced during training and it is zero at
the global minimum. Therefore, multi-pass SGD has a built-in self annealing protocol, that can be optimized
by tuning only two parameters (b and τ ) instead of the whole trajectory of the temperature over time.

5.4. The analytic characterization
Figure 5 shows the comparison between the average performance of persistent-SGD obtained from
numerical simulations (grey symbols) with the prediction derived by integrating the DMFT Equations (red
line). The left panel depicts the average magnetization, while the right panel displays the average training loss
as a function of time. Figure 6 displays the same comparison for the Langevin algorithm. In both cases, we
find a very good agreement between theory and simulations.

5.5. Random initialization
Figure 7 investigates the behavior of full-batch GD (full red lines) and persistent SGD (dashed blue lines)
starting from random initialization at fixed α= 2.5. Persistent SGD is run at fixed b = 0.5, τ = 2. We show
the median magnetization (main plots) and the median loss (insets) as a function of time for increasing
values of the dimension: N = 100 (above-left panel), N = 500 (above-right panel), N = 1000 (below-left
panel). and N = 2500 (below-right panel). In this casem0 = 0 and the warm start in the four panels is only
given by finite size effects. We clearly see that, at time scales shown here, GD is stuck at a plateau of height
decreasing as the dimension N increases. As studied in [21], the recovery transition of GD starting from
random initialization for comparable system sizes happens at α≈ 6, which is few times larger than the value
α= 2.5 considered here. However, we observe that already at α= 2.5 the persistent-SGD algorithm can reach
perfect recovery for the system sizes under consideration. The time to reach the solution from random
initialization is, as expected, compatible with logarithmic increase in the system size. These observations
suggest that the recovery transition for stochastic GD starting from random initialization is shifted to lower
values of α when compared to GD. This is an interesting direction for future investigations.
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Figure 5. Average magnetization (left) and average training loss (right) as a function of time for the persistent SGD algorithm in
the spherical setting, at fixed α=M/N= 3, warm startm0 = 0.7, persistence time τ = 2, batch size b = 0.6. The grey dots
represent the result from numerical simulations, averaged over 500 seeds at learning rate η= 0.01 and dimension N= 1000. The
red curve marks the performance predicted by the numerical integration of DMFT equations.

Figure 6. Average magnetization (left) and average training loss (right) as a function of time for the Langevin algorithm in the
spherical setting, at fixed α=M/N= 3, warm startm0 = 0.7, temperature T= 1. The grey dots represent the result from
numerical simulations, averaged over 1000 seeds at learning rate η= 0.01 and dimension N= 1000. The red curve marks the
performance predicted by the numerical integration of DMFT equations.

6. Discussion

In this paper, we have considered the real-valued phase retrieval problem as a paradigmatic highly
non-convex optimization problem to test the generalization performance of full-batch GD and some of its
stochastic variants: multi-pass SGD, its persistent version, and the Langevin algorithm. We have shown that
stochasticity is crucial to achieve perfect recovery of the hidden signal at low sample complexity so that
stochastic GD outperforms GD in this task. We have observed intriguing features of the loss profile and
illustrated how various sources of noise allow the dynamics to circumvent the traps in the landscape. We have
provided an analytic description of the learning curve in the infinite-dimensional and continuous-time limit
via the dynamical mean-field theory, showing that the observed behavior is not due to finite size effects or to
a finite learning rate. The present work leads to interesting extensions both on the analytic and numerical
sides. On the one hand, the characterization of the dynamical evolution of the algorithms via DMFT can be
extended to include realistic initializations (e.g. spectral initialization). On the other hand, it would be
interesting to test the persistent variant of multi-pass SGD and investigate the role of the persistence time on
real datasets and architectures, which we leave for future work. In this regard, another relevant extension of
this work could be generalizing the DMFT analysis of SGD models of structured data with low intrinsic
dimension embedded in large dimension, such as the Hidden Manifold Model presented in [22]. Finally, the
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Figure 7.Median magnetization (main plot) and median loss (inset) as a function of time from numerical simulation for the
spherical setting at fixed α=M/N= 2.5, learning rate η= 0.01, 100 seeds, and increasing dimension N= 100 (above-left),
N= 500 (above-right), N= 1000 (below-left), N= 2500 (below-right). We consider random initializationm0 = 0, so the finite
initial overlap with the signal is only due to finite size effects. The full red line marks the performance of full-batch gradient
descent, while the dotted blue line represents the persistent-SGD algorithm at batch size b = 0.5 and persistence time τ = 2.

DMFT framework presented in this work provides the tools to characterize the stochastic dynamics via a
detailed analysis of two time quantities, which is a promising direction for future work.
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Appendix A. Derivation of DMFT equations

In this section, we provide additional details on the derivation and numerical integration of the theoretical
equations describing the learning performance via dynamical mean-field theory (DMFT), presented in
section 4 of the main text. The computation is on the line of the one presented in [9, 36]. Here we consider a
different loss function, i.i.d. Gaussian input data and labels generated by a teacher vector. We have to take
into account the spherical constraint and the additional white noise of the Langevin algorithm. We use the
Martin–Siggia–Rose–Janssen–deDominicis (MSRJD) path-integral formalism. We start by writing the
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dynamical partition function:

1= Zdyn =

ˆ
Dw

N∏
i=1

δ

(
−∂wi(t)

∂t
− ν̂(t)wi(t)−

∂

∂wi

1

b

αN∑
µ=1

sµ(t)v(hµ(t);h
(0)
µ )+ ςi(t)

)

=

ˆ
DwDŵ× exp

[ˆ
dt iŵ(t) ·

(
−∂w(t)

∂t
− ν̂(t)w(t)− ∂

∂w

1

b

αN∑
µ=1

sµ(t)v(hµ(t);h
(0)
µ )+ ς(t)

)]
.

(A.1)

Since the dynamical partition function is strictly equal to one, we can safely average its expression on the
random patterns ξµ and on the Langevin noise ς . Following [36] we can use a supersymmetric formalism to
proceed in a compact way. In this case the dynamical variables w(t) are merged with their auxiliary fields
ŵ(t) in a superfield involving a couple of Grassmann variables θa, θ̄a [41]:

w(a) = w(t)+ iθaθaŵ(t). (A.2)

In this way the dynamical partition function (averaged over the Langevin noise) can be written as:

Zdyn =

ˆ
Dw(a)exp

[
−1

2

ˆ
dadbw(a)K (a,b)w(b)+αN lnZ

]
, (A.3)

where

Z =

ˆ
Dh(a)D ĥ(a)

ˆ
dh0dĥ0 exp [Sloc] , (A.4)

and the kinetic kernel K (a,b) is implicitly defined in such a way that

− 1

2

ˆ
dadbw(a)K (a,b)w(b) =−i

ˆ
dt ŵ(t) ·

(
∂w(t)

∂t
+ ν̂(t)w(t)− iTŵ(t)

)
. (A.5)

In particular, we have:

K (a,b) =−2Tδ(ta − tb)− θaθ̄a∂taδ(tb − ta)− θbθ̄b∂tbδ(ta − tb)+ ν̂(a)δ(a,b),

ν̂(a) = ν̂(ta),

δ(a,b) = δ(ta − tb)(θaθ̄a − θbθ̄b).

(A.6)

The local action Sloc is defined as:

Sloc = ih0ĥ0 + i

ˆ
da ĥ(a)h(a)− 1

2

[
ĥ20 + 2 ĥ0

ˆ
da ĥ(a)m(a)+

ˆ
dadb ĥ(a)ĥ(b)Q(a,b)

]
− 1

b

ˆ
das(a)v(h(a);h0),

(A.7)

where s(a)= s(ta), and we have introduced the dynamical order parameters:

m(a) =
1

N
w(a) ·w(0), Q(a,b) =

1

N
w(a) ·w(b). (A.8)

Performing the Gaussian integration over the superfields w(a), we obtain:

Zdyn =

ˆ
DQ(a,b)Dm(a)eNAdyn , (A.9)

where

Adyn =−1

2

ˆ
dadbK (a,b) [Q(a,b)+m(a)m(b)]+

1

2
lndetQ+α lnZloc, (A.10)

where

Zloc =

ˆ
dh0√
2π

e−h20/2

ˆ
Dh(a) exp

[
−1

2

ˆ
dadbh(a)Q−1(a,b)h(b)

−1

b

ˆ
das(a)v(h(a)+ h0m(a);h0)

]
.

(A.11)
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At this point we can evaluate the integral over Q andm through a saddle point computation. The saddle
point equations read:

0= −K (a,b)+Q−1(a,b)+ 2α δ lnZloc
δQ(a,b) (A.12)

0= −
´
dbK (a,b)m(b)+α δ lnZloc

δm(a) . (A.13)

We can evaluate the functional derivatives:

2α
δ lnZloc

δQ(a,b)
=

α

b 2
⟨s(a)s(b)∂1v(h(a)+ h0m(a);h0)∂1v(h(b)+ h0m(b);h0)⟩

− α

b
δ(a,b)⟨s(a)∂2

1v(h(a)+ h0m(a);h0)⟩ ≡M(a,b)− δν(a)δ(a,b),

α
δ lnZloc

δm(a)
=−α

b
⟨h0s(a)∂1v(h(a)+ h0m(a);h0)⟩,

(A.14)

where we have defined:

M(a,b) =
α

b 2
⟨s(a)s(b)∂1v(h(a)+ h0m(a);h0)∂1v(h(b)+ h0m(b);h0)⟩,

δν(a) =
α

b
⟨s(a)∂2

1v(h(a)+ h0m(a);h0)⟩.
(A.15)

The average in brackets denotes the average with the following measure:

⟨•⟩=
ˆ

dh0√
2π

ˆ
Dh(a)•

× exp

[
−h20

2
− 1

2

ˆ
dadbh(a)Q−1(a,b)h(b)− 1

b

ˆ
das(a)v(h(a)+ h0m(a);h0)

]
.

(A.16)

Along the lines of [36], we can rewrite the average in equation (A.16) as an average over h0 ∼ N (0,1), the
variables s(t) defined in equation (7) of the main text, and an effective stochastic process:

∂th(t) =−ν̃(t)h(t)− 1

b
s(t)∂1v(h̃(t);h0)+

ˆ t

0
dt ′MR(t, t

′)h(t ′)+χ(t), (A.17)

with initial condition P(h(0)) = e−h(0)2/2(1−m2
0)/
√
2π(1−m2

0), where χ(t) is an effective Gaussian noise:

⟨χ(t)⟩= 0, ⟨χ(t)χ(t ′)⟩= 2Tδ(t− t ′)+MC(t, t
′), (A.18)

and we have defined the following auxiliary functions:

h̃(t)≡ h(t)+ h0m(t),

δν(t) =
α

b
⟨s(t)∂2

1v(h̃(t);h0)⟩,

ν̂(t) =−α

b
⟨s(t)h̃(t)∂1v(h̃(t);h0)⟩+T,

ν̃(t) = ν̂(t)+ δν(t).

(A.19)

The expression for the Langrange multiplier ν̂(t) is obtained enforcing the spherical constraint∑N
i=1 dw

2
i /dt= 0 by applying Itô’s formula to equation (13) of the main text. The kernelsMC(t, t ′) and

MR(t, t ′) are obtained expandingM(a, b):

M(a,b) =MC(ta, tb)+ θaθ̄aMR(tb, ta)+ θbθ̄bMR(ta, tb),

MC(t, t
′) =

α

b 2
⟨s(t)s(t ′)∂1v(h̃(t);h0)∂1v(h̃(t ′);h0))⟩,

MR(t, t
′) =

α

b 2
⟨s(t)s(t ′)∂1v(h̃(t);h0)∂2

1v(h̃(t
′);h0) iĥ(t

′)⟩

=
α

b 2

δ

δP(t ′)
⟨s(t)∂1v(h̃(t);h0)⟩

∣∣∣∣
P=0

.

(A.20)
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The variable P(t ′) indicates a linear perturbation applied on the gap variable h at time t ′ and then set to zero.
The kernelMR(t, t ′) can be also expressed as:

MR(t, t
′) =

α

b 2
⟨s(t)∂2

1v(h̃(t);h0)T(t, t
′)⟩, (A.21)

where T(t, t ′) = δh(t)/δP(t ′) satisfies,

∂tT(t, t
′) =−ν̃(t)T(t, t ′)− 1

b
s(t)∂2

1v(h̃(t);h0)(T(t, t
′)− δ(t, t ′))+

ˆ t

t ′
dsMR(t, s)T(s, t

′). (A.22)

Furthermore, from equation (A.13) we get the behavior of the magnetizationm(t) as a function of time:

∂tm(t) =−ν̂(t)m(t)−µ(t), m(0) =m0, (A.23)

wherem0 is defined in equation (11) of the main text and:

µ(t) =
α

b
⟨s(t)h0 ∂1v(h̃(t);h0)⟩. (A.24)

Moreover, settingm(t)= 0 one gets a set of equations that coincide with [36]. From the solution Q(a, b) of
the saddle point equation (A.12), we can obtain the equations for the dynamical correlation function
C(t, t ′) =

∑
iwi(t)wi(t ′)/N and the response R(t, t ′) =

∑
i δwi(t)/δHi(t ′)/N to a linear perturbation of the

weights by an infinitesimal local field Hi(t). Indeed, we can write the closure relation:

δ(a,b) =

ˆ
dcQ−1(a, c)Q(c,b)

=

ˆ
dc [K (a, c)−M (a, c)]Q(c,b)+ δν(a)Q(a,b).

(A.25)

Now we can express the overlap explicitly in time and Grassman coordinates:

Q(a,b) =
1

N
w(a) ·w(b) = C(ta, tb)−m(ta)m(tb)+ θaθ̄aR(tb, ta)+ θbθ̄bR(ta, tb), (A.26)

where we remind that in (A.10) we have performed the change of variable Q(a,b)→ Q(a,b)+m(a)m(b).
Plugging equation (A.6) and equation (A.20) in equation (A.25), we find:

δ(ta − tb)(θaθ̄a − θbθ̄b) =− 2TR(tb, ta)+ ∂taC(ta, tb)

− ∂tam(ta)m(tb)+ ν̂(ta)(C(ta, tb)−m(ta)m(tb))

−
ˆ

dtc [MC(ta, tc)R(tb, tc)+MR(ta, tc)(C(tb, tc)−m(tb)m(tc))]

+ θaθ̄a [∂taR(tb, ta)+ ν̂(ta)R(tb, ta)]− θaθ̄a

ˆ
dtcMR(tc, ta)R(tb, tc)

+ θbθ̄b

[
∂taR(ta, tb)+ ν̂(ta)R(ta, tb)−

ˆ
dtcMR(ta, tc)R(tc, tb)

]
+ δν(ta)

(
C(ta, tb)−m(ta)m(tb)+ θaθ̄aR(tb, ta)+ θbθ̄bR(ta, tb)

)
.

(A.27)

We can derive two equations from the scalar and Grassman terms (the terms in θaθ̄a and θbθ̄b result in the
same contribution):

∂tC(t
′, t) =− ν̃(t)C(t, t ′)+ 2TR(t ′, t)+

ˆ t

0
dsMR(t, s)C(t

′, s)+

ˆ t ′

0
dsMC(t, s)R(t

′, s)

−m(t ′)

(ˆ t

0
dsMR(t, s)m(s)+µ(t)− δν(t)m(t)

)
if t ̸= t ′,

∂tR(t, t
′) =− ν̃(t)R(t, t ′)+ δ(t− t ′)+

ˆ t

t ′
dsMR(t, s)R(s, t

′),

(A.28)

where we have used equation (A.23) in the first of equation (A.28). An alternative expression to equation
(A.19) for the Lagrange multiplier ν̂(t) can be obtained by plugging C(t, t)= 1 in the first of equations
(A.28):
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ν̂(t) =− δν(t)+T+

ˆ t

0
ds(MR(t, s)C(t, s)+MC(t, s)R(t, s))

−m(t)

(
µ(t)− δν(t)m(t)+

ˆ t

0
dsMR(t, s)m(s)

)
.

(A.29)

A.1. Numerical integration of the DMFT equations
In this section, we provide more details on the numerical integration of DMFT equations. Similarly as in [9],
we implement an iterative scheme to reach the convergence of the self-consistent process in equation (A.17).

• We start from a simple guess of the kernels in equation (A.20) and the auxiliary functions in (A.19). In
particular, we setm(t)=m0 ∀t,MR(t, t ′) = 0 ∀t, t ′,MC(t, t) =MC(0,0) ∀t,MC(t, t ′) = 0.1×MC(0,0) ∀t ̸=
t ′, and we initialize all the entries of ν̃(t) and µ(t) to their value at t= 0.

• We use the previous guess to generate multiple realizations of the curve h(t).
• We update the kernels and auxiliary functions, computing the averages over h(t), h0, s(t). We introduce a
damping in the update to control the oscillations. We integrate equation (A.23) to obtain the magnetization
m(t).

• We repeat the above procedure until the kernels and auxiliary functions reach a fixed point.

We use equation (A.29) in order to compute the Lagrange multiplier ν̂(t) because we find that it is more
stable to fluctuations. We integrate equation (A.22) to compute the kernelMR. We typically use a discrete
time step dt= 10−3 − 10−2.

Appendix B. Generalization error

In this section, we sketch the computation of the average generalization error in the phase retrieval problem
under consideration. Given a previously unseen data point ξ

new
∼ N (0, I

N
), the generalization error can be

defined for a generic error function f : R2 → R, taking as first argument the true label and as second
argument the estimated one. The average generalization error is then:

εgen = E{ξ
µ
}M
µ=1,ξnew

,w(0) [ f(ynew, ŷnew)] , (B.1)

where ynew =

∣∣∣∣ 1√
N
ξ
new

·w(0)

∣∣∣∣ is the true label, ŷnew =

∣∣∣∣ 1√
N
ξ
new

·w
∣∣∣∣ is the estimated one, and the weight vector

w implicitly depends on the training set {ξ
µ
}Mµ=1 as well as on the hidden signal w(0). We can introduce

Dirac’s δ-functions to rewrite:

εgen =E{ξ
µ
}M
µ=1,ξnew

,w(0)

ˆ +∞

−∞
dx

ˆ +∞

−∞
dz f(|x|, |z|)

× δ

(
x− 1√

N
ξ
new

·w(0)

)
δ

(
z− 1√

N
ξ
new

·w
)

=E{ξ
µ
}M
µ=1,ξnew

,w(0)

ˆ +∞

−∞

dxdx̂

2π

ˆ +∞

−∞

dzdẑ

2π
f(|x|, |z|)

× exp

(
ix̂x+ îzz− i√

N
ξ
new

·
(
x̂w(0) + ẑw

))
,

(B.2)

where we have substituted the δ-functions with their Fourier representation. We first compute the average
over the new sample ξ

new
, that is independent both of w(0) and w:

εgen =E{ξ
µ
}M
µ=1,w

(0)

[ˆ +∞

−∞

dxdx̂

2π

ˆ +∞

−∞

dzdẑ

2π
f(|x|, |z|)

×exp

(
ix̂x+ îzz− 1

2
x̂2
w(0) ·w(0)

N
− 1

2
ẑ2
w ·w
N

− x̂ẑ
w(0) ·w

N

)]
.

(B.3)

In the following, we denote:

q0 =
w(0) ·w(0)

N
, q=

w ·w
N

, m=
w(0) ·w

N
. (B.4)
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Figure B.1.Mean squared error (main plot) and average training loss (inset) as a function of time, at dimension N= 1000,
α=M/N= 3, warm startm0 = 0.2, learning rate η= 0.01, for increasing values of regularization λ= 0 (left), λ= 0.1 (center)
and λ= 1 (right). We consider full-batch gradient descent (red triangles), multi-pass SGD (green squares) and its persistent
version (blue dots). For the last two algorithms, we take a mini-batch size b = 0.5. The symbols mark the average over
simulations, while the black line shows the prediction from equation (B.8), where the overlaps q0, q, andm are obtained from
simulations. The simulations are run over 250 seeds and at each time a new landscape is generated. In both panels, the gradient is
rescaled by the fraction of samples in the mini-batch at each iteration.

By integrating over the conjugate variables x̂ and ẑ, we obtain:

εgen = E{ξ
µ
}M
µ=1,w

(0),z,x [ f(|x|, |z|)] , (B.5)

where z∼ N (0,q) and x∼ N (my/q,q0 −m2/q). In the infinite dimensional limit, q0, q, andm concentrate
to their average value, therefore we simply obtain:

εgen = Ez,x [ f(|x|, |z|)] , (B.6)

where now the quantities q0, q,m are intended in the infinite dimensional limit. This computation shows that
the generalization error depends on the signal and the training set only through q0, q,m. In particular, in the
spherical case q0 = q= 1 and the performance depends only onm.

Mean squared error

As a measure of the error, we can consider for instance the commonly-used mean squared error, here defined
as:

MSE(y, ŷ) = E(y− ŷ)2. (B.7)

From equation (B.5), we obtain that the mean squared error between the true label of a new sample and its
estimate—in the infinite dimensional limit—is:

MSE= q+ q0 −
4

π

[√
qq0 −m2 +marctan

(
m√

qq0 −m2

)]
, (B.8)

which in the spherical case is a monotonically decreasing function ofm. Figure B.1 shows the mean squared
error for GD, multi-pass SGD and its persistent version in the case of ridge regularization. The dots mark the
average from simulations, while the black line displays the prediction obtained from equation (B.8),
computed in the average values of q0, q andm from simulations at dimension N = 1000. We find a very good
agreement between theory and simulations.

Appendix C. Ridge regularization

In this section, we consider a variant of the training algorithm presented in equations (5), (8), and (9) of the
main text, where instead of projecting the weights on the hyper sphere |w(t)|2 = N at each iteration, we apply
a ridge regularization of strength λ. The parameter λ is fixed during training and can be tuned a posteriori,
e.g. by cross-validation. The flow dynamics given by equation (13) of the main text is modified as follows:

∂wi(t)

∂t
=−λwi(t)+ ςi(t)−

1

b

αN∑
µ=1

sµ(t)∂1v(hµ(t);h
(0)
µ )

1√
N
ξµi . (C.1)
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Figure B.2.Mean squared error (main plot) and average training loss (inset) as a function of time, at dimension N= 1000,
α=M/N= 3, warm startm0 = 0.2, learning rate η= 0.01, fixed regularization λ= 0.5. We consider full-batch gradient descent
(red triangles), multi-pass SGD (green squares) and its persistent version (blue dots). For the last two algorithms, we take a
mini-batch size b = 0.5. The simulations are run over 250 seeds and at each time a new landscape is generated. The left panel
depicts the performance of the three algorithms when the gradient is rescaled by the fraction of training samples in the
mini-batch b , as defined in equation (C.1). The right panel illustrates the case in which the gradient is not rescaled by the fraction
of samples used to compute it.

Note that this change simply amounts to substituting the time-dependent Lagrange multiplier ν̂(t) with the
constant λ. All the other variables are defined in the main text and stay the same. We modify accordingly the
initial condition (defined by equation (11) of the main text) as follows:

w(t= 0) =m0w
(0) + z ∈ RN, (C.2)

wherem0 is the average initial magnetization and z∼ N (0, IN). This change is reflected in the initial
condition for the effective stochastic process in equation (A.17), that becomes: P(h(0)) = e−h(0)2/2/

√
2π. We

still consider a teacher on the hyper sphere |w(0)|2 = N.

C.1. Results
In this section, we discuss the results obtained for ridge regularization. The behavior of the GD-based
algorithms is qualitatively the same as what we have observed for the spherical case in the main text:
stochasticity is beneficial for generalization also in the case of ridge regularization and without any
regularization.

Figure B.1 illustrates the performance of GD, multi-pass SGD and persistent SGD for three different
values of regularization strength: λ= 0 (left panel), λ= 0.1 (central panel), λ= 1 (right panel), fixing the
values of all the other control parameters. The generalization performance is evaluated by measuring the
MSE and the average training loss is shown in the inset. We observe that the effect of ridge regularization is
different on SGD and persistent-SGD: while the former benefits from a finite regularization λ= 1, the latter
generalizes better at low values of λ. Evaluating the optimal regularization is beyond the scope of this work.
Furthermore, the left and central panels of figure B.1 display a peculiar phenomenon of double descent of the
generalization error as a function of time that has also been observed in real data [42].

Figure B.2 depicts the MSE as a function of time for the three algorithms under consideration at fixed
regularization (λ= 0.5) and for two different dynamics. In particular, we illustrate the effect of rescaling the
gradient by the fraction of samples in the mini batch (b ) on the dynamics. In the left panel, the gradient is
rescaled by b , while in the right panel we do not rescale it. We observe that, while the rescaling is beneficial
for persistent-SGD, SGD performs better without it. At variance with the spherical case considered in the
main text, in the case of ridge regularization of fixed strength λ rescaling the gradient by b does not result in
a simple rescaling of the learning rate. Instead, the regularization is also affected.

Appendix D. Additional figures

In this section we provide additional figures in support to our observations in sections 3 and 5 of the main
text. All the figures illustrate the spherical case treated in the main text. Therefore, the generalization
performance is entirely captured by the magnetization.

Figure B.3 compares the average magnetization (left panel) and loss (right panel) as a function of
training time for GD, SGD and persistent-SGD for decreasing values of the learning rate. We observe that, in
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Figure B.3. Average magnetization (right) and average loss (less) as a function of training time for the three algorithms: GD
(full red lines), SGD (dotted green lines) and persistent-SGD (dashed blue lines). The numerical simulations are run at fixed
α=M/N= 3, warm startm0 = 0.2 and input dimension N= 1000, over 250 seeds. The stochastic algorithms are run at fixed
batch size b = 0.5. We consider decreasing values of learning rate η= 0.01, 0.001, 0.0005, 0.0001, depicted with increasing color
intensity. For visibility purposes, we plot t+ η on the x-axes.

Figure B.4. Instances of the magnetization as a function of time from numerical simulations for the persistent SGD algorithm at
fixed α=M/N= 3, batch size b = 0.5 and warm initializationm0 = 0.2. We consider the model with spherical constraint
defined in section 2 of the main text. We consider four different values of the persistence time: τ = 0.05 (upper left), τ = 0.5
(upper right), τ = 2 (lower left), τ = 5 (lower right). For each panel, we show 50 different seeds, corresponding to different
realizations of the landscape and initial weights. The simulations are run at dimension N= 1000 and learning rate η= 0.01.
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the limit of small learning rate, the learning curves of SGD collapse to the ones of GD. On the contrary, the
persistent-SGD algorithm has a well-defined continuous time limit that is different than the one of full batch
GD.

Figure B.4 summarizes the effect of increasing the persistence time on the performance of the
persistent-SGD algorithm. We show the instances of the magnetization as a function of time—corresponding
to 50 different realizations of the problem landscape and initializations of the weight vector. We consider
increasing values of the parameter τ = 0.05 (upper left panel), τ = 0.5 (upper right panel), τ = 2 (lower left
panel), and τ = 5 (lower right panel), at a fixed ratio α= 3 of training samples over input dimensions, batch
size b = 0.5 and warm initializationm0 = 0.2. On the one hand, we observe that increasing the persistence
time gradually diminishes the number of seeds that get stuck at intermediate plateau, resulting in an
improved generalization performance. On the other hand, until time t∼ τ the samples in the mini-batch
have not been reshuffled yet (on average). Therefore, for large values of τ the plateaus disappear but the
magnetization is stuck at the beginning of the training and only at training time t> τ it has a sudden
increase.
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