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ABSTRACT 
 

Thermally coupled distillation is a new energy-saving method, but the traditional thermally coupled 
distillation simulation calculation process is complicated, and the optimization method based on the 
traditional simulation process is difficult to obtain a good feasible solution. The neural network 
algorithm has the advantages of fast learning and can approach nonlinear functions arbitrarily. For 
the problems in complex process control systems, neural network control does not require 
cumbersome control structures or precise mathematical models. When training the network, only 
the input and output samples it needs are given, so that the dynamics of the system can be 
controlled. In this way, the dynamic performance of the system can be approximated. This method 
can effectively solve the mathematical model of the thermally coupled distillation process, and 
quickly obtain the solution of the optimized variables and the objective function. This article 
summarizes the research progress of artificial neural network and the optimization control of 
thermally coupled distillation and the application of neural network in thermally coupled distillation. 
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1. INTRODUCTION 
 

Artificial Neural Network Algorithm (ANN) is a 
simulation of the physical structure of the human 

brain, that is, the computer simulation method 
simulates the human brain from the physical 
structure so that the system has certain 
intelligence of the human brain. As we all know, 
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the human brain is a complex biological network 
composed of billions of highly interconnected 
neurons. It is also the source of human analysis, 
association, memory, and logical reasoning 
capabilities. Neurons transmit information to 
each other through synaptic connections. The 
way and strength of the connection changes with 
learning, so that the learned knowledge is stored. 
The artificial neural network model composed of 
neurons that simulate the basic unit of 
information storage and processing in the human 
brain has intelligent behaviors such as self-
learning and self-organization, which can make 
the machine have a certain level of intelligence. 
Neural network technology [1,2] has a strong 
ability to integrate information, can well solve the 
problem of complementarity and redundancy 
between input information, and can properly 
coordinate conflicting input information. 
Therefore, the neural network technology has 
shown its superiority in the design of multi-
variable, large-scale and complex control 
schemes. It has been widely used in many fields 
such as intelligent driving [3], signal processing 
[4], drug screening [5], image processing [6], etc., 
It does not need to establish an accurate 
mathematical model between input and output. 
When training the network, only the input and 
output samples it needs are given, so that the 
dynamic performance of the system can be 
approximated [7]. Especially in chemical process 
control, and it is one of the first fields to apply 
neural networks. Antsaklis et al. [8] loaded the 
physical quantities from various measuring 
instruments (such as temperature, acidity, 
concentration, viscosity, vaporization speed, 
products, etc.) from various measuring 
instruments into the trained neural network 
during the chemical reaction process, The 
network can predict abnormal situations in time 
to stop the occurrence of abnormal situations in 
time [9]. The good adaptability and self-learning 
performance of artificial neural network in 
processing high-dimensional, non-linear process 
industry data can provide petrochemical 
enterprises with production operating system 
optimization modeling [10], device optimization 
[11], dynamic and static equipment fault 
diagnosis [12], energy saving and safety and 
environmental protection and pre-efficient 
support [13]. 
 
In the petrochemical process, the rectification 
process is one of the most widely used unit 
operations, and also the unit operation with the 
largest energy consumption. Improving the 
energy utilization rate of the rectification process 

is always a hot research topic. Thermally coupled 
distillation [14] has attracted widespread 
attention because of its characteristics of thermal 
coupling and equipment integration, which can 
save energy and equipment investment. The 
main tower and the auxiliary tower of the 
thermally coupled distillation are bidirectionally 
connected by gas-liquid flow, avoiding the use of 
the condenser or reboiler of the auxiliary tower, 
and can realize the direct coupling of the material 
and the heat, which belongs to the internal 
thermal coupling enhancement technology [15]. 
This enhanced strategy can effectively solve the 
problem of back-mixing of intermediate 
components in the tower, improve the separation 
efficiency of the process, and thereby greatly 
reduce the energy consumption of the 
rectification process, while reducing the 
investment in heat exchange equipment and 
greenhouse gas emissions. It is mainly used to 
separate three-component mixtures or divide the 
mixture into three products. It can be divided into 
the following forms: �Sideline distillation tower, 
composed of main tower and sideline rectification 
tower; �Sideline stripping tower, composed of 
main Tower and side-line stripping tower; 
�Completely thermally coupled distillation tower, 
this tower was first proposed by Petlyuk, so it is 
also called Petlyuk distillation tower, composed 
of main tower and pre-fractionation tower, the 
role of pre-fractionation tower is to carry out the 
mixture After preliminary separation, the light key 
components are all separated from the top of the 
tower, the heavy key components are completely 
extracted from the tower kettle, and the 
intermediate components are distributed 
between the top and bottom of the tower. The 
main tower serves to pre-separate the top of the 
tower. It is further separated from the material at 
the bottom of the tower to obtain the product that 
meets the requirements; �Dividing Wall Column
（DWC）, the vertical partition is used inside the 
tower to divide the tower into two parts. This 
structure can be considered essentially Combine 
the main tower and pre-splitting tower of the 
petlyuk rectification tower in the same tower. 
 

DWC is not limited to ternary separations alone, 
but it can be used also in azeotropic separations 
[16], extractive distillation [17], and reactive 
distillation [18]. Compared to classic distillation 
design arrangements, DWC offers several 
important benefits [19]: �High thermodynamic 
efficiency due to reduced remixing effects; 
�Lower energy requirements as compared to 
conventional separation sequences; �High purity 
for all three or more product streams reached in 
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only one column; �Small footprint and low 
investment due to the reduced number of 
equipment units; �Reduced maintenance costs 
as compared to traditional distillation sequences. 
For a given material, the partition tower 
rectification requires a smaller reflux ratio than 
the conventional rectification process, which 
increases the operating capacity, saves energy 
by up to 60%, and saves equipment investment 
by 30%. It can be widely used in petroleum 
refining, petrochemical industry, chemicals and 
gas refining. 
 
The traditional method of simulating and 
optimizing the thermally coupled rectification 
process is to decompose the system first, and 
then perform the convergence calculation of the 
main and auxiliary towers in turn. It is difficult to 
achieve the overall matching and optimization of 
the main and auxiliary towers in the calculation 
process. Therefore, improving the simulation and 
optimization of the thermocouple process has 
important theoretical and practical significance. 
The neural network model can simulate this 
convergence calculation well. This paper briefly 
describes the basic model of neural network and 
the optimization control research of thermally 
coupled distillation and summarizes the 
application of neural network in thermally 
coupled distillation. 

 

2. THE PRINCIPLE AND APPLICATION 
DEVELOPMENT OF NEURAL 
NETWORK 

 

Artificial neural network is based on the basic 
principles of neural networks in biology. After 
understanding and abstracting the human brain 
structure and external stimulus response 
mechanism, it uses network topology knowledge 
as the theoretical basis to simulate the complex 
information processing mechanism of the human 
brain’s nervous system. A mathematical model. 
Generally, an artificial neural network is 
composed of three basic elements: neurons, 
topological structure and learning rules. Neurons 
form a basic network-like topology. After the 
information is input through the neurons, it is 
processed according to certain learning rules, 
and the results are output through the neurons 
[1]. Compared with traditional computing, artificial 
neural networks have significant parallel 
processing, sub-storage, convergence, 
associative memory and other functional 
characteristics. Artificial neural networks can be 
divided into continuous and discrete types 
according to their functions. According to the 

topology, they can be divided into forward 
networks and feedback networks. According to 
learning rules, they can be divided into 
supervised learning networks and unsupervised 
learning networks. Commonly used neural 
network models are mainly BP, RBF, Hopfield etc. 
 
The development process of neural network can 
be roughly divided into two periods before 2006 
[20]. In the 1940s, Warren Mcculloch and Walter 
Pitts opened the door to research in the field of 
artificial neural networks. They proved in 
principle that artificial neural networks can 
calculate any arithmetic and logical function [20]. 
In the late 1950s, although many people were 
influenced by Minsky and Papert, there was no 
powerful computer to support various 
experiments and the perceptron was questioned, 
causing the research of artificial neural networks 
to stagnate for more than ten years [20]. The 
1980s became a turning point in the 
development of neural networks. Nobel Prize 
winner Hopfield John proposed the Hopfield 
neural network model

 
[20]. The dynamic nature 

of this Recurrent neural network may be used to 
solve complex problems. In 1974, Werbos [21,22] 
proposed the BP (Back Propagation) algorithm 
for neural network learning in his doctoral thesis, 
which provided a practical solution for the 
learning, training and implementation of 
multilayer neural networks. At the same time, in 
1986, a team of scientists led by Rumelhart and 
McCelland [23,24] conducted a detailed analysis 
of the error back propagation algorithm of the 
multilayer network, which further promoted the 
development of the BP algorithm. The topological 
structure of BP network includes input layer, 
hidden layer and output layer. It can store this 
complex mapping relationship through learning 
without knowing the specific mathematical 
expressions of the input and output in advance. 
The learning of the parameters in the network 
usually adopts the strategy of back propagation 
and uses the fastest gradient information to find 
the smallest network error. The combination of 
parameters. BP algorithm is currently the most 
popular fault diagnosis feedforward network [25]. 
 
Following BP, in order to simulate the local 
response characteristics of biological neurons, 
Broomhead and Lowe

 
[26] introduced radial 

basis functions into the design of neural   
networks in 1988, forming a radial basis function 
neural network RBF. Later, Jackson and Park 

[27,28]
 
demonstrated the uniform approximation 

performance of RBF on nonlinear continuous 
functions in 1989 and 1991, respectively. The 
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RBF neural network is a three-layer forward 
network. Its basic working principle is: use       
the hidden layer space formed by RBF to    
project the low-dimensional input vector and 
transform the data into the high-dimensional 
space so that the original linearity is inseparable 
The problem can become linearly separable. 
Since the input layer only plays the role of   
signal transmission in the RBF network, the 
connection weight between the input layer      
and the hidden layer is 1, the hidden layer 
realizes the nonlinear projection of the input 
features, and the output layer is responsible     
for the final The linear weighted summation.   
The RBF network has a fastlearning 
convergence rate. One important reason is that it 
belongs to a local approximation network and 
does not need to learn the weights of hidden 
layers, which avoids the time-consuming process 
of layer-by-layer transmission of errors in the 
network. The RBF network is also an important 
sign of the real practical application of neural 
networks. It has been successfully applied to 
engineering fields such as nonlinear function 
approximation [28], pattern classification [29], 
control system modeling [30], time-varying data 
analysis [31], and fault analysis and diagnosis 

[11]. 
 
In the past 10 years, artificial neural networks 
have achieved rapid development. In 2006, 
Professor Hinton [32] provided an effective 
algorithm for initializing weights, which led to the 
development of deep learning in the field of 
research and applications [33-35].  
 
Automatic controls refer to the application of 
control theory to regulate systems or processes 
without human intervention. Sands [7] reveals a 
novel compensator capable of minimum-time 
performance of an in-plane maneuver with zero 
residual vibration (ZV) and zero residual 
vibration-derivative (ZVD) at the end of the 
maneuver.The novel compensator has a 
whiplash nature of first commanding maneuver 
states in the opposite direction of the desired end 
state.And Pontryagin’s minimization of 
Hamiltonian systems to derive controls from 
precise mathematical models. 
 
3. APPLICATION DEVELOPMENT OF 

THERMALLY COUPLED DISTILLATION 
 

Thermally coupled distillation is one of the most 
commonly used distillation enhancement 
technologies and one of the energy-saving 
distillation processes. Thermally coupled 

rectification changes the composition distribution 
in the tower through the coupling of materials 
and solves the problem of backmixing of 
intermediate components. It is an internal 
thermal coupling strengthening technology, which 
can improve thermodynamic efficiency, reduce 
process energy requirements, and reduce the 
production cost of the entire process. It takes two 
towers to separate the three-component mixture 
into three pure components by the conventional 
distillation method, with two tower orders: direct 
sequence (DS)and Indirect sequence (IS), as 
shown in Fig. 1. For the separated-component 
mixture A, B, C (A, B, C decreasing volatile 
order), in the direct sequence, the liquid phase 
logistics in the first tower drops from the top, as 
the content of volatile component A gradually 
decreases, the intermediate component B 
concentration gradually increases. Under the 
feed plate near the tower, the concentration of 
intermediate component B reaches the maximum, 
and then the concentration of B needs to be 
rereduced in the tower kettle of the second tower, 
which is the component remixing in the 
conventional distillation process Compound 
phenomenon exists for the multicomponent 
separation process. The remixing effect is an 
important reason for the higher energy 
consumption in conventional distillation. The 
DWC tower is identical thermodynamically, as 
shown in Fig. 2. The distillation tower next the 
partition column is equipped with a vertical wall in 
the middle of the distillation column, which is 
divided into the upper section, the lower section 
and the distillation feed section 4 separated by 
the partition. This structure can be considered 
the main tower of the FC tower in the same 
tower.The arrangement in Fig. 1b is known as a 
prefractionator arrangement. Note that the first 
column in Fig. 1b, the prefractionator reduce the 
overall energy consumption. Comparing the 
prefractionator arrangement in Fig. 2 with the 
conventional direct and indirect sequences, the 
prefractionator arrangement typically requires 20 
to 30% less energy than conventional 
arrangements for the same separation duty. The 
reason for this difference is rooted in the fact that 
the distributed distillation and prefractionator 
arrangements are fundamentally thermodyna-
mically more efficient than a simple arrangement. 
The cause of the higher efficiency in DWC over a 
conventional arrangement is that the 
prefactionator (see Fig. 2) requires significantly 
less energy than a conventional separation train. 
This arrangement avoids the remixing of   
internal streams, which in a serie of two 
consecutive columns shows a peak in the 
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concentration of the middle component. 
Additionally, the advantage of considering a pre 
factionator is the better distribution in the middle 
component, allowing greater freedom to match 
the feed composition with a tray in the column   

to further reduce mixing losses at the feed          
tray. This mixing or remixing that happens          
in a conventional arrangement is the      
inevitable source of thermodynamic inefficiency 
[36]. 

 

  
    a. Direct sequence(DS)                          b. Indirect sequence(IS) 
 

Fig. 1. Conventional processes for three components separation 
 

 
 

Fig. 2. Dividing Wall Column（DWC） 
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People have carried out a lot of design, 
optimization and application research for the 
above various forms of thermally coupled 
distillation. Waybum and Seader [37] proposed a 
homotopy consensus algorithm suitable for 
difficult convergence problems. The main 
purpose of the homotopy continuation method is 
to address the shortcomings of Newton's method 
for the initial value of the iteration. It can 
guarantee Large-scale convergence of the initial 
value. Aiyue Zhou [38] and others used the 
homotopy consensus algorithm to simulate the 
thermally coupled distillation process. Through 
the simulation calculation of the thermally 
coupled distillation column for separating 
benzene, toluene, and o-xylene with multiple 
solution conditions and multiple working 
conditions, When the linear system generated by 
Newton's method and homotopy continuation 
method, an improved THOMAS method and 
progressive block elimination method (BRR) 
combined algorithm is proposed. Xien Xu [39] 
used the block tridiagonal matrix method of 
Naphtali-Sandholm to complete the simulation of 
the rectification process in which the liquid phase 
may be stratified on part or all of the equilibrium 
stages in the thermocouple column system. Ping 
Qu [40] took the butadiene separation device as 
the object and conducted a simulation analysis 
and research on the operating characteristics 
and energy-saving effects of fully thermally 
coupled distillation for non-ideal systems. 
Deming Yang [41]

 
used reflux ratio and coupled 

vapor-phase stream flow as tuning parameters to 
determine the best design conditions for the 
minimum energy consumption and stable 
operation of the all-thermal coupling tower to 
separate paraffins. Hong Li [42]

 
and others 

developed a new type of differential pressure 
thermally coupled rectification technology to 
solve the problem of incomplete thermal coupling 
between the top condenser and the bottom 
reboiler.  
 
The most well-known TCDS sequence, the 
Petlyuk configuration, has some operational 
challenges due to bidirectional vapour flow, 
which makes its implementation difficult in two-
column mode. To overcome these limitations, a 
number of unidirectional vapour flow 
configurations have been proposed in the 
literature [43].  
 
Mansour Emtir, Endre Rev & Zsolt Fony [44] 

studied the energy-saving properties of all 
column sequences in three-component 
rectification separation through rigorous 

simulation. Fidkowski & Agrawall [45] focused on 
the energy consumption characteristics of the 
four-component thermal coupling distillation 
separation under the minimum reflux ratio, and 
still came to the conclusion that this distillation 
structure is the best, and the energy saving 
reached 20.50%. In the simple design method 
proposed by Amminudin et al [46-47], more 
rigorous vapor and liquid balance models are 
emphasized; Kim [48-49], starting from the 
degree of freedom of the analysis system, 
proposed a rigorous method for designing a 
completely thermally coupled tower; 
Muralikrishna et al [50]

 
proposed a diagram 

method to design the dividing wall tower. 
Jiangwei Xie

 
[51] et al. proposed a method to use 

response surface methodology (RSM) instead of 
non-dominant genetic algorithm (NSGA-Ⅱ ) for 
multi-objective optimization design of the next-
door tower. 
 

Based on the stochastic optimization strategy 
[52,53], Weizhong an [54,55] proposed a 
decomposition solution strategy for the 
uncertainty of the number of columns required by 
the thermally coupled complex distillation 
process system and the number of condensers 
and reboilers. The original problem is 
decomposed into a series of sub-problems with 
different numbers of tower sections to be solved 
separately. 
 
For the optimization control problem of high-
purity thermally coupled distillation column, 
Yingxiao Zhang [56] proposed a control scheme 
based on nonlinear process model control 
(NPMC) for a nonlinear object model-benzene-
toluene system model, and The conventional PID 
control schemes are compared, and the results 
show that NPMC is one of the most effective 
control schemes [57]. It adopts the principle of 
general model control (GMC) [58] to design the 
nonlinear process basic model controller, which 
can smoothly realize the change of the set value 
and effectively eliminate the external interference. 
 
A direct advantage of using thermal coupling 
technology is to reduce the number of heat 
exchangers in the system, which is more 
attractive for separating multi-component 
mixtures. Petlyuk [59] extended the idea of three-
component total thermal coupling distillation to 
separate N-component mixtures, and proposed 
that no matter the number of separated 
components, the entire system can only use one 
condenser and one reboiler. Triantafyllou and 
Smith [60] optimized the flow value of each part 
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of the vapor and liquid phases under a given 
number of plates, and only took the recovery rate 
as the adjustment variable. Hernandez and 
Jimenez

 
[61]

 
proposed to use dynamic model to 

optimize the design of coupling tower. 
 
4. APPLICATION OF NEURAL NETWORK 

ALGORITHM IN THERMALLY 
COUPLED DISTILLATION 

 
At present, intelligent optimization algorithms are 
used more in the online optimization of chemical 
processes. In the research of artificial neural 
networks, there are two kinds of stochastic 
optimization algorithms that are very popular. 
They are the Simulated Annealing Algorithm 
(Simulated Annealing, SA) proposed by 
Metropolis [62] and the Genetic Algorithm (GA) 
proposed by Holland [63]. SA simulates the 
annealing process of metal materials after 
heating, and GA simulates the natural evolution 
process of organisms. From the perspective of 
simulation objects, the two have almost nothing 
in common, but from the formal structure of the 
algorithm itself, the two are extremely similar. SA 
ensures the probabilistic reachability of each 
point in the state space by means of the 
Generation Function, simulates the equilibrium 
state by the Acceptation Operator, and 
guarantees the directionality of the algorithm 
iteration process by accepting the directional 
changes of the operator; while GA The synergy 
of crossover operator and mutation operator is 
used to ensure the probability reachability of 
each point in the state space, and the direction of 
the algorithm iteration process is ensured by the 
action of selection operator. From a 
mathematical point of view, random algorithms 
for global optimization can be divided into two 
categories: one is through traversal search, such 
as SA and GA, etc.; the other is through 
directional advancement, such as generalized 
genetic algorithms [64]. 

 
4.1  BP Neural Network Based on Genetic 

Algorithm 
 
Since thermally coupled rectification uses a 
complex series of main towers and auxiliary 
towers to replace conventional distillation towers, 
if traditional methods are used to simulate a large 
number of iterative calculations between the 
main and auxiliary towers, the calculation 
process is complicated and the established 
model lacks simplicity It is not conducive to 
further optimization calculation of the process. 

Yanmin Wang and Li He [65,66] used artificial 
neural networks and genetic algorithms to 
propose a new modeling method and 
optimization algorithm for the thermally coupled 
distillation separation process, and used artificial 
neural networks to establish a thermally coupled 
distillation process model. The genetic algorithm 
optimizes the thermally coupled distillation 
process. They used actual engineering examples 
to study the separation of carbon five 
components and the separation of butadiene 
respectively. The results showed that this method 
can not only effectively and conveniently solve 
the mathematical model of the thermally coupled 
distillation process, but also quickly obtain 
Optimize variables and objective functions, and 
have the ability to obtain global optimal solutions. 
 

On the basis of Aspen simulation software, ANN 
is used to establish a thermally coupled 
distillation process model. The steps are: (1) 
Confirmation of input and output variables. The 
system process analysis determines the target 
variables and constraints and the optimization 
variables of GA, and then determines the input 
and output variables of ANN. (2) Acquisition of 
ANN training data. Using Aspen PLus simulation 
calculation, several sets of data with a certain 
interval and range are obtained. (3) Training of 
ANN weights. Given network structure, 
convergence accuracy E... Use part of the data 
calculated in (2) to train the ANN. (4) ANN 
accuracy test. Use the remaining data in (2) to 
detect the training effect of the artificial neural 
network. Using BP algorithm, selecting enough 
sample data and reasonable network 
environment for training, can meet the simulation 
requirements. However, the BP algorithm is a 
gradient-based method. This method has slow 
convergence speed and is often troubled by local 
minima. GA absorbs the biological evolution 
principle of "survival of the fittest, survival of the 
fittest", and can be used without specific 
information about the object Perform global 
optimization in a complex space. The basic 
principle of the application of artificial neural 
network based on genetic algorithm [67] is to use 
genetic algorithm (GA) to optimize the 
connection weights of neural networks, and use 
GA's optimization ability to obtain the best 
weights. Because genetic algorithms have the 
advantages of strong robustness, randomness, 
globality and suitable for parallel processing, they 
are widely used in neural networks, and there are 
many successful applications. The black box 
mathematical model is first established by 
artificial neural network, and then the genetic 
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algorithm is used for global optimization, which 
solves the complex calculation process of 
traditional thermally coupled distillation 
simulation and it is difficult to optimize the overall 
optimization between the main and auxiliary 
towers.  
 

4.2 RBF Neural Network Based on Hybrid 
Optimization Algorithm 

 

If the center of the radial basis function (RBF) 
neural network is selected properly, the hidden 
layer only needs a few neurons to get a good 
approximation effect, and the learning speed is 
fast, and it also has the characteristics of 
approaching the optimal point. Kun Cai and 
Xinggao Liu [68] proposed a hybrid optimization 
algorithm based on RBF neural network internal 
model control, which is a hybrid optimization 
algorithm of particle swarm optimization. Through 
actual engineering examples, the benzene-
toluene system is used as an example to study. 
Through comparison, the optimization method 
can overcome the shortcomings of large PID 
overshoot and long response time, and it is 
smaller than conventional RBF-IMC The 
overmodulation also overcomes the 
shortcomings of IECR-IMC [69] poor stability. 
The RBF neural network internal model control 
scheme based on the hybrid optimization 
algorithm is an excellent internal thermally 
coupled distillation control strategy. 
 

4.2.1 Radial basis function neural network 
dynamic system modeling and 
realization of control strategy 

 

According to the composition principle of the 
internal model controller, the positive model 
(internal model) and the inverse model (controller 
model) of the controlled object are first 
established. The radial basis function (RBF) 
neural network can naturally divide the input 
space, so that the input vector can be extended 
to the high-dimensional hidden unit space, so 
that the local minimum is greatly reduced. 
Through pre-sampling the input and output data 
of the system, establish NNlVl and NNC models 
offline through RBF neural network, and then put 
the learned network into the actual control 
system to run; the system should continuously 
check the input and output data during actual 
operation, according to the positive model The 
weight of NNM is corrected online with the object 
output error, and the weight of NNC is corrected 
online according to the set value and object 
output error, and the parameters of the two 
networks are fine-tuned. This not only enables 

the system to have a faster learning speed, but 
also When the given reference input changes, 
the system can still track the given reference 
input well, thus realizing the adaptive control of 
the controlled object. 
 

4.2.2 Improved algorithm of radial basis 
function (RBF) neural network 

 

The subtractive clustering algorithm [70] is a 
simple and effective clustering algorithm. 
Compared with other methods, this method does 
not need to determine the number of clusters in 
advance. K-means [71] algorithm is a basic 
division method in clustering algorithms. The 
subtractive clustering algorithm regards each 
data sample as a potential cluster center, and 
determines the cluster center according to the 
density index of the sample data, which can 
effectively reflect the distribution of the data. The 
subtractive clustering algorithm can determine 
the number of class centers, but it can only 
select the class centers within the sample range, 
but cannot modify them; the K-means algorithm 
can continuously modify the class centers, but 
the number of clusters K is a given by experience 
The K-means clustering result is greatly affected 
by the initial value, and the function center point 
generated by the K-means clustering algorithm, 
as well as the randomly generated RBF neural 
network weight and Gaussian function radius r. 
The PSO algorithm and its extension mean-filed 
filtering algorithms

 
[72,73] are based on swarm 

intelligence, which has good optimization 
capabilities, but if the initial particles deviate too 
much from the target population, it will require a 
larger iteration time cost. Therefore, the 
clustering number K of the K-means algorithm 
can be determined by the subtractive clustering 
algorithm, and then the multiple clustering of the 
K-means algorithm and the optimization of the 
gradient descent method can produce a more 
reasonable improved algorithm for the initial 
particle swarm of the PSO algorithm. Train 
through the improved PSO algorithm to 
continuously adjust the speed and position of the 
particles. When the iteration termination 
condition is met, that is, when the fitness function 
value is better than the set adaptability threshold 
or greater than the set number of iterations, the 
iteration ends and the RBF is determined All 
parameters of the network. 

 

5. CONCLUSION 
 
Dividing Wall Column tower technology is a 
unique role of distillation, which is increasingly 
widely used in the chemical industry.But the 
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thermocouple distillation process does not apply 
to all chemical separation processes, and its 
application has certain limitations, because, while 
such towers have the most ideal system 
structure from a thermodynamic perspective, it is 
mainly achieved through the "reuse" of the heat 
of the input distillation tower. This process is 
greatly limited when the heat provided by the 
reboiler is very large or the condenser needs to 
cool the material to a very low temperature. In 
addition, the thermal dual distillation process has 
certain requirements for the purity, feed 
composition, relative volatility and operating 
pressure of the tower. The difficult problems of 
control in the production process of distillation 
tower are correlation, complexity and uncertainty, 
and the traditional control method cannot meet 
the requirements of production control. The 
advantage of neural network application in the 
control field is that neural network can 
approximate arbitrary nonlinear mapping with 
any precision, bringing a new and non-traditional 
expression tool to complex system model; multi-
input and multioutput structure mode can be 
easily applied to multivariable control system; 
meanwhile, by integrating qualitative and 
quantitative data, it can use connectionist 
structure, combined with traditional control 
methods and symbolistic artificial intelligence. It 
can be predicted that in the near future, the 
neural network algorithm will be more widely 
used in the optimization of thermally coupled 
distillation control. 
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