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Abstract 
 

In this paper, the comparison of using garch (1, 1) and intergrated garch, igarch (1, 1) models on 
petroleum prices will be examined. This time-varying variation of asset returns as the horizon widens 
about kurtosis and volatility persistence are calculated and the results shows that petroleum prices 
dynamics submits more to igarch (1, 1) than garch (1, 1) model. 
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1 Introduction 
 
The chemistry concerning the distributions of asset Returns on Petroleum (Oil) prices should not be taken 
for granted. It is a well-known fact, however, that the distribution of returns are independently and 
identically normally, IID (0, 1) distributed. The volatility of an asset is a guide to investors for their decision 
making process because the investors are interested in returns and their uncertainty [1]. The specification of 
appropriate volatility model for capturing variations in stock returns cannot be overemphasized, as it helps 
investors in their risk management decision and portfolio adjustment [2]. Actually, many researches 
concerning empirical studies have revealed that the financial markets returns are characterized by: 
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(i) Heavy tails, being leptokutic 
(ii) The returns on equity are skewed (negatively skewed) 
(iii) As volatility tending to clustering 
(iv) Volatilities exhibiting leverage effect. I.e., volatility reacting differently to sharp or sudden rise in 

prices or sharp or sudden drop in prices. 
 
As revealed by the first fact, heavy tails, we need to examine which of the models correctly models the 
heavy tails conditions of the petroleum prices returns. Since Skewness is a measure of asymmetric condition 
of the returns, the correct model will also take care of this. 
 
Engle [3] was the first to propose the Autoregressive Conditional Heteroscedastic (ARCH) model to capture 
volatility of stock returns. Bollerslev and Taylor [4,5] proposed the Generalized Autoregressive Conditional 
Heteroscedastic (GARCH) model. Several other GARCH models have however, been proposed to capture 
asymmetric properties of volatility such as the EGARCH, TGARCH, PARCH and COGARCH, etc. These 
models have been used in the literature to model conditional variance (volatility).  In Nigeria, for example, 
symmetric and asymmetric GARCH models have been employed to model volatility of stock market returns 
as proposed by, [6,7]. More so, [8] applied the GARCH model to the volatility of the banking sector indices 
in Nigeria.  
 

2 Methodology 
 
2.1 Data 
 
The data for this work are monthly Petroleum Prices (sales) in US dollar per barrel from January, 2000 to 
July, 2017 from the Central Bank of Nigeria database website www.cbn.gov.ng under the Data & Statistics 
heading and the Petroleum Crude Oil Price subheading. 
 

2.2 Data analysis     
 
The analysis is based solely on logarithmic price changes defined as: 
 

( ) ( )( ) log log
t t t m
y m Oilp Oilp

-
= -                                                            (1) 

 

Where   
t

Oilp  gives the price at the time t, m is the length of the lag. 

 
The logarithmic changes, also referred to as returns were generated for m =1, 3, 6, 12, 20, and 30. The next 
step involved drawing 20 random samples without replacement from the return when m =1. This procedure 
is applied also to the series with m = 3, 6, 12, 20, and 30, using the statistical softwares, Minitab, SPSS, 
Eviews. This done, the work went further to perform the arch test as the data shows conformance to 
volatility clustering. Hence we can use GARCH to model it. By modeling, we can see the revealing results 
as in Tables 4 and 5.  
 

2.3 Testing for arch effects 
 
The Oil Price was plotted against time to discover the volatile nature of the variable after which it proceeded 
to test for arch effects. The steps for arch tests using LM test of Engle (1982) are as follows: 
 

(a) Run a postulated linear regression of the form       

 

1 2 2 3 3 4 4t t t t t
y X X X ub b b b= + + + +                                                                   (2) 
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(b) Square the residuals and regress on m own lags to test for ARCH of order m, i.e.                            
run the regression 

   
��� = �� + ������� + ⋯ +	������� + ��                                                                                    (3) 

  
Where is the error term. Obtain from this equation. 
 

(c) The test statistic is defined as 
2TR (the number of observations multiplied by the coefficient of 

multiple correlation) from the last regression and is distributed as: 
 

2

mc   i.e,  
2 2

m TRc :                                                                                                                       (4) 

 
(d) The null and alternative hypotheses are: 

 
��: �� = 0	���	�� = 0	���	�� = 0	��� … �� = 0		 → ��	���ℎ	������ 
 
��: �� ≠ 0	��	�� ≠ 0	��	�� ≠ 0	�� … �� ≠ 0 → 		�ℎ���	��	���ℎ	������  
 

The study used LM test of Engle (1982) with arch test results given in the results side; 
 

2.4 Garch models  
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Where 
t
r is the returns on

t
y ,  

 
2

ts = conditional variance of the return, 
t
r

.
 

 
Most specifically, when p =1 and q =1, then we have the specification for 
  
Garch (1, 1) given by: 
 

2 2 2

1 1t t tc aU bs s
- -

= + +                                                                                                          (6) 

Where 
 
 a +b <1 
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3 Results 
 
This figure shows that our data conforms to volatility clustering, in which we can make use of GARCH as 
our tool for modeling. 
 

 
 

Fig. 1. Volatile nature of oil prices data 
 

Table 1. The arch effect on monthly data 
 

 
This table is the result of arch effects test for the monthly data, and as shown by the F – statistic with 
probability of prob.F (5,194) 0.0059 it has an arch effect, 194 is the sample size after an adjustment of which 
5 variables were used for the test. 

Heteroskedasticity test: ARCH 
   
F-statistic 3.382489     Prob. F(5,194) 0.0059 
Obs*R-squared 16.03741     Prob. Chi-Square(5) 0.0067 
 

Test Equation:    
Dependent Variable: RESID^2 
   
Method: Least Squares   
Date: 07/16/20   Time: 07:11   
Sample (adjusted): 11 210   
Included observations: 200 after adjustments 
  
Variable Coefficient Std. Error t-Statistic Prob.   
C 0.000227 0.000142 1.592820 0.1128 
RESID^2(-1) 0.293998 0.071795 4.094993 0.0001 
RESID^2(-2) -0.068495 0.074831 -0.915338 0.3612 
RESID^2(-3) 0.003624 0.074992 0.048323 0.9615 
RESID^2(-4) -0.009190 0.074830 -0.122817 0.9024 
RESID^2(-5) -0.005217 0.071796 -0.072663 0.9421 
R-squared 0.080187 Mean dependent var 0.000289 
Adjusted R-squared 0.056481 S.D. dependent var 0.002000 
S.E. of regression 0.001943 Akaike info criterion -9.619885 
Sum squared resid 0.000732 Schwarz criterion -9.520936 
Log likelihood 967.9885 Hannan-Quinn criter. -9.579842 
F-statistic 3.382489 Durbin-Watson stat 1.997126 
Prob(F-statistic) 0.005938    
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Table 2. The arch effect on annual data 
 

Heteroskedasticity test: ARCH 
   
F-statistic 30.90741     Prob. F(5,183) 0.0000 
Obs*R-squared 86.53126     Prob. Chi-Square(5) 0.0000 
 
Test Equation:    
Dependent Variable: RESID^2   
Method: Least Squares   
Date: 07/16/20   Time: 07:26   
Sample (adjusted): 11 199   
Included observations: 189 after adjustments 
  
Variable Coefficient Std. Error t-Statistic Prob.   
C 0.028774 0.008844 3.253510 0.0014 
RESID^2(-1) 0.738361 0.073216 10.08474 0.0000 
RESID^2(-2) -0.146127 0.091461 -1.597702 0.1118 
RESID^2(-3) 0.051622 0.092128 0.560332 0.5759 
RESID^2(-4) 0.003545 0.091519 0.038732 0.9691 
RESID^2(-5) 0.020980 0.073444 0.285654 0.7755 
R-squared 0.457837 Mean dependent var 0.088930 
Adjusted R-squared 0.443024 S.D. dependent var 0.106304 
S.E. of regression 0.079336 Akaike info criterion -2.199021 
Sum squared resid 1.151835 Schwarz criterion -2.096109 
Log likelihood 213.8075 Hannan-Quinn criter. -2.157329 
F-statistic 30.90741 Durbin-Watson stat 2.008475 
Prob(F-statistic) 0.000000    
 
This table is the result of arch effects test for the annual data, and as shown by the F – statistic with 
probability of prob.F (5,183) 0.0000 it has an arch effect, 183 is the sample size  after an adjustment of 
which 5 variables were used for the test. 
 

Table 3. The Arch effect on oil price at lag 30 (30 months) 
 

Heteroskedasticity test: ARCH 
   
F-statistic 223.3405     Prob. F(5,170) 0.0000 
Obs*R-squared 152.7468     Prob. Chi-Square(5) 0.0000 
 

Test Equation:    
Dependent Variable: RESID^2   
Method: Least Squares   
Date: 09/28/20   Time: 18:54   
Sample (adjusted): 2002M12 2017M07  
Included observations: 176 after adjustments 
  
Variable Coefficient Std. Error t-Statistic Prob.   
C 0.023437 0.012882 1.819413 0.0706 
RESID^2(-1) 1.167657 0.075333 15.49992 0.0000 
Variable Coefficient Std. Error t-Statistic Prob.   
RESID^2(-2) -0.370939 0.113490 -3.268469 0.0013 
RESID^2(-3) -0.051781 0.116977 -0.442661 0.6586 
RESID^2(-4) 0.372304 0.113648 3.275954 0.0013 
RESID^2(-5) -0.197618 0.075507 -2.617204 0.0097 
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R-squared 0.867879 Mean dependent var 0.292136 
Adjusted R-squared 0.863993 S.D. dependent var 0.340773 
S.E. of regression 0.125674 Akaike info criterion -1.276759 
Sum squared resid 2.684961 Schwarz criterion -1.168674 
Log likelihood 118.3548 Hannan-Quinn criter. -1.232920 
F-statistic 223.3405 Durbin-Watson stat 1.996627 
Prob(F-statistic) 0.000000    
 
This table is the result of arch effects test for the data at lag 30 months and as shown by the F – statistic with 
probability of prob.F (5,170) 0.0000 it has an arch effect, 170 is the sample size after an adjustment of which 
5 variables were used for the test. 
 
We calculate kurtosis and volatility persistence as the return horizon widens. 
 

3.1 Calculation of kurtosis 
 
Kurtosis is now seen clearly in Table 4 to be decreasing as the horizon widens. 
 

Table 4. Return horizons of oil prices and kurtosis 
 

Series Skewness Kurtosis P- value Normality status 
Oilp 0.4437 2.0186 0.0005 None normal (nm) 
Oilp1 -1.3566 7.0982 0.0000 None normal (nm) 
Oilp3 -1.6579 7.8420 0.0000 None normal (nm) 
Oilp6 -1.5923 6.7778 0.0000 None normal (nm) 
Oilp12 -0.7892 3.0991 0.0000 None normal (nm) 
Oilp20 -0.6534 2.7491 0.0009 None normal (nm) 
Oilp30 -0.5055 2.4152 0.0058 None normal (nm) 

 
Sorry, there was a repetition of the table instead of the correct Table 4. 
 

3.2 Calculation of volatility Persistence 
 
Actually, this table is GARCH (1, 1) tending to IGARCH (1, 1) as the horizon widens. 
 

Table 5. Return horizons of oil prices and volatility persistence for GARCH (1,1) 
 

Series Model c a b a+b 
Oilp GARCH(1,1) 11.74922 (0.030) 1.145417 (0.0030) -0.118642 (0.3750) 1.0268 
Oilp1 GARCH (1,1) 0.003672 (0.0000) 0.482746 (0.0001) -0.013232 (0.8921) 0.4695 
Oilp3 GARCH (1,1) 0.004522 (0.0007) 0.813278 (0.0000) 0.159254 (0.0393) 0.9725 
Oilp6 GARCH (1,1) 0.005856 (0.0129) 0.782897 (0.0000) 0.197179 (0.0000) 0.9801 
Oilp12 GARCH (1,1) 0.006337 (0.0451) 0.781633 (0.0002) 0.218260 (0.0003) 1.0000 
Oilp20 GARCH (1,1) 0.004601 (0.0457) 0.882525 (0.0035) 0.127529 (0.2700) 1.0101 
Oilp30 GARCH (1,1) 0.006076 (0.0368) 0.905485 (0.0093) 0.140026 (0.1812) 1.0455 

Note: The values in parenthesis are the p-values 

 

4 Discussion and Conclusion  
 
Table 4 shows that as the Return Horizon increases, Kurtosis decreases thereby decreasing the thickness of 
the tail. This implies that as the return horizon increases, the distribution tends to be approximately normal, 
that is, the fat tail decreases and tends (slowly) to normality. Also, in Table 5, as the Return Horizon 
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increases, the volatility persistence increases, that is, the sum, a+b, increases, implying that the time which is 
needed for shocks in volatility to die out increases. Secondly, since persistent is generally about 100%, the 
covariance stationality condition is not satisfied and GARCH (1, 1) model follows integrated GARCH, 
IGARCH (1, 1) process. Hence, we conclude that the dynamics of petroleum (oil) prices submits more 
appropriately to IGARCH (1, 1) process. 
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