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ABSTRACT 
 

The present paper deals with the flow of an incompressible couple stress fluid past a porous 
spheroidal shell which is made up of two confocal prolate spheroids S0 and S1 where S0 is within 
S1. The spheroid S0 is taken to be a solid and the annular region between S0 and S1 is porous, with 
the boundary of S1 being pervious. The flow outside S1 is governed by the linearized version of 
Stokes’ couple stress fluid flow equations and that within the porous region is governed by the 
classical Darcy’s law. The resulting equations are then solved analytically for the velocity and 
pressure fields and drag experienced by the body is obtained.  The variation of drag with the 
different parameters like the material and the geometric is studied numerically and the results are 
presented through graphs.  Stream lines are also plotted to understand the flow pattern. 
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76A05 Non-Newtonian fluids 

 

1. INTRODUCTION 
 

Joseph and Tao [1], as early as in 1964 made a 
study regarding the effect of permeability on the 
slow motion of a porous sphere in a viscous 
liquid. Since then, a number of papers appeared 
dealing with flow of a viscous liquid past and 
within porous bodies using analytical or 
numerical methods in view of their importance in 
geophysical, industrial and engineering 
applications. To cite a few: Padmavathi and 
Amaranth obtained a solution for the problem of 
Stokes flow of a viscous fluid past a porous 
sphere [2]. Qin and Kaloni obtained a solution for 
the creeping flow past a porous spherical shell 
[3]. Zlatanovski dealt with the analytical solution 
to the problem of axisymmetric creeping flow of a 
viscous liquid past a porous prolate spheroidal 
particle [4].  Vainshtein et al. [5] in cited a 
number of references dealing with flow past and 
within porous spheres with the flows outside the 
body governed by Navier Stokes equations and 
within the porous region governed by classical 
Darcian model or Brinkman model. These 
authors have made a significant contribution by 
dealing with the flow of a viscous liquid past and 
within a permeable spheroid [5]. Srinivasacharya 
studied the flow of an incompressible viscous 
fluid within an axially symmetric porous 
approximate shell [6].  
 

To the extent the authors have surveyed, the 
above important problems have not been studied 
with reference to polar fluid models which are 
more general than the classical Newtonian 
viscous fluid model. While there exist several 
polar fluid models, Eringen’s micropolar fluid 
model [7] and Stokes’ couple stress fluid model 
[8] are two significant generalizations to the 
classical model. These two arise from different 
stand points. The micropolar fluid model of 
Eringen takes into account both the mechanical 
interactions as well as the micro structure of the 
molecules within a fluid volume element. The 
couple stress fluid model of Stokes takes into 
consideration the mechanical interactions taking 
place across a surface in the fluid medium and is 
not concerned with the micro structure. A number 
of axisymmetric Stokes flow problems related to 
these fluids dealing with solid sphere, spheroid 
and approximate sphere can be seen in the 
works of Lakshmana Rao et al. [9-15], 
Ramkissoon and Majumdar [16], Ramkisson [17] 

and Iyengar et al. [18,19]. However, 
Srinivasacharya et al. [20] considered the 
creeping flow of a micropolar fluid past a porous 
sphere and Ramana Murthy et al. [21] studied 
this problem with respect to a couple stress fluid.  
Recently, the authors also studied the problem of 
flow of couple stress fluid past a porous 
spheroidal shell with liquid core [22]. 
 

In this paper, we investigate the slow steady flow 
of an incompressible couple stress fluid past a 
porous spheroidal shell containing a rigid 
confocal spheroidal core. The region outside the 
outer spheroid is occupied by an incompressible 
couple stress fluid and the flow in the porous 
region is governed by the classical Darcy’s law. 
As an initial trial for solving the differential 
equations governing the flow, which are of higher 
order than the Navier Stokes equations, we have 
solved this problem with a certain set of 
boundary conditions (to be explained later) and 
obtained the velocity components in terms of 
Legendre functions, Associated Legendre 
functions, prolate radial and angular wave 
functions. The drag on the spheroid is evaluated 
for diverse values of the couple stress 
parameter, permeability parameter and the size 
of the spheroid. The stream lines are plotted for 
diverse values of these parameters as well. It is 
noticed that an increase in the couple stress 
viscosity decreases the drag significantly and a 
decrease in the couple stress viscosity and a 
simultaneous increase in the permeability 
parameter has a disturbing effect on the flow 
pattern. 
 

2. BASIC EQUATIONS 
 

Couple stress fluid model given by V.K. Stokes 
[8,23] is based on the presumption that the fluent 
medium can sustain couple stresses. Here the 
non-symmetric stress tensor tij and the couple 
stress tensor mij are given by 
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The notation is as in [22]. These material 
constants are constrained by the inequalities  
 

0  , 023   , 01  , 11             (3)

     

The parameter 


1  is a characteristic measure 

of the polarity of the fluid model which is zero in 
the case of nonpolar fluid. 
 

The equations of motion concerning couple 
stress fluid flow are 
 

 0)( 



qdiv

t





          (4) 
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div curl divM
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
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  (5) 

     

where   is the density of the fluid,  
)(s  is the 

symmetric part of the force stress diad and M is 

the couple stress diad and f


, c are the body 

force per unit mass and body couple per unit 
mass respectively. 
 

3. MATHEMATICAL FORMULATION OF 
THE PROBLEM 

 

Consider two confocal prolate spheroids S0 and 
S1 with foci P,Q, where PQ=2c units. Let O be 

the midpoint of PQ. Introduce the cylindrical polar 
coordinate system (r,θ,z) with respect to O as 
origin and OQ extended on either side as Z axis. 
 
Let us consider the uniform slow stationary flow 
of an incompressible couple stress fluid past the 
spheroid S1 with velocity U in the direction of the 
z-axis far away from the body. Let us denote the 
region outside the spheroid S1 by Ғ1 and the 
porous region between S0 and S1 by Ғ0. The 
boundary of S0 is impervious while that of S1 is 
pervious.  
 
We assume that the flow in the region Ғ1 is 
governed by the incompressible couple stress 
fluid flow equations and the fluid flow within Ғ0 is 
governed by the classical Darcy’s law. Since the 
flow is slow, we assume that the flow is 
axisymmetric and is the same in any meridian 
plane and thus the flow variables are 
independent of the azimuth angle. 
 

We shall introduce the prolate spheroidal 

coordinates   ,,  with   eee ,,  as 

base vectors and (h1, h2, h3) as the 
corresponding scale factors through the definition  
 

  icosh c   irz      (6) 

 

We assume that the flow is Stokesian as in the 
classical investigation of the problem by Payne 
and Pell in the case of classical viscous fluid [24] 
and Lakshmana Rao and Iyengar in the case of 
micropolar fluid [11]. This enables us to drop the 
inertial terms in the momentum equation.
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Let (
)1()1( , pq ) denote the velocity and pressure 

in the region Ғ1 and let (
)0()0( , pq ) be the 

velocity and pressure in the porous region Ғ0. In 
view of the symmetry of the flow, we take 

  

         ,v,u  (1)(1))1(
  eeq                (7)

       

      ,p  (1))1( p                         (8)

       
The basic equations governing the steady 
Stokesian flow in region Ғ1 can be written in the 
form 
 

0)( )1( qdiv


                                               (9) 
 

(1) (1)

(1)
1

  curl  

    0

grad p curl q

curl curl curl curl q
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In view of the continuity equation, we introduce 

the stream function 
 1  through 
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Using (7) and (11) 
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in which the Stokes stream function operator E

2
 

is given by 
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Evaluating the expressions for
)1(  curl qcurl


, 

)1(    qcurlcurlcurlcurl


, the basic equations 

describing the flow in the region Ғ1 is  given by 
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Eliminating  
 1p  from (14) and (15), we have  

  014

2

2
6 








 


E
c

E  ,                     (16)

      
where  
 

1
2

2






c
           (17) 

 
Thus the flow variables in the region Ғ1 are 
completely determinable from the partial 
differential equation (16) with the appropriate 
boundary and regularity conditions. The fluid 

pressure 
)1(p  can be obtained using equations 

(14) and (15). 
 
As mentioned earlier, the flow in the porous 
region Ғ0 is assumed to be Darcian. In view of 
this, the equations governing the flow in the 
region Ғ0 are given by 

 

0)( )0( qdiv


                       (18) 

 

 
 

 0
1

0  pgrad
k

q


          (19) 

 

which implies that the pressure 
 0p  is a 

harmonic function given by the equation  
 

  002  p                        (20) 

 

4. BOUNDARY CONDITIONS 
 
The determination of the relevant flow field 

variables
 i  and

)(ip , (i=0, 1) is subjected to 

the following boundary and regularity conditions. 
 

(i) Continuity of the normal velocity 
component on the interface: 

 

     
 1u  = 

 0u  on S1          (21)
  

(ii) Vanishing of the tangential velocity    
component  on the interface: 

 

         
 1v  = 0 on S1          (22)
      

(iii) 0
2

1 )1( qcurl on S1                              (23) 
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(iv)  No slip condition on S0 : 
 

 0v  = 0 on S0          (24)
      

(v) Continuity of pressure on the interface: 
 

          
 1p  = 

 0p  on S1                 (25) 
  
In addition to the above boundary conditions, it is 
natural to have regularity of the flow field 
variables on the axis of symmetry. Further as the 
flow is a uniform stream at infinity we have,  

2

2

1
Ur far away from the body. (26) 

 
Other types of boundary conditions are also in 
vogue. Stokes in [23] mentions also the condition 
that the couple stresses vanish on the boundary 
in place of the condition (iii) above. As an initial 
trial for solving a more difficult problem than in 
the case of a viscous liquid, we are attempting 
the problem through the above set of boundary 
conditions. 

 
5. SOLUTION FOR THE FLOW IN THE REGION Ғ1 
 

Since, we are dealing with a prolate spheroidal coordinate system, we have 
  

 )( 22
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3 tsch                                                                (27)  

 

                           





















2

2

2

2
2

222

2 )1()1(
)(

1

t
t

s
s

tsc
E                                            (28)

  
 

































t
t

s
s

t
t

s
s

tsc
22)1()1(

)(

1
2

2

2

2
2

222

2
                                             (29) 

 

Where 
 

 coshs ; cost                                                                                      (30)  

 

We assume that the boundary of the spheroid S1 is given by s=s1 and that of S0 by s=s0. 
 

The solution of equation (16) can be obtained by superposing the solutions of the equations  
 

04 E                                                                                                     (31)  

 

and 
 

0
2

2
2 




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


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

c
E                                                                                         (32)  

in view of the commutativity and linearity of the operators 
4E and 




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




2

2
2

c
E


. 

 

Following Lakshmana Rao and Iyengar [11] and Iyengar, Radhika [25], we see that: 
 

5.1 Solution of Equation (31)  
 

The solution of (31) can be written in the form 

10                        (33)  
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Where 
 

)1)(1(
2

1 222
0 tsUc                                                                                        (34)  

 

and 
 








0
11

222
1 )()()1)(1(

n
nn tPsGtsc                                                            (35)  

 

where )(1 tPn is the derivative of )(1 tPn with respect to t.  
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for n=0,1,2…                                                                                                                                       (36)
  
Here  
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As )(1 sgn  involves one set  1nA  of arbitrary constants, the functions )(1 sGn  involve two sets of 

arbitrary constants  1nA  and 1nB . Using this in equation (35), we get 1 . 

 

5.2 Solution of Equation (32) 
  

To solve the equation (32) (viz.) 0
2

2
2 








 


c
E , we use the method of separation of variables* 

and  take the solution in the form 
 

 tSsRtsc )()1)(1( 22                                                                                     (38) 
 

Substituting (38) in the equation (32), we notice that R(s) and S(t) respectively satisfy the differential 
equations 
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and 
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where   is a separation constant [25]. These are spheroidal wave differential equations of radial and 
angular type respectively. To ensure regularity of solution at infinity and in the flow region, we have to 
choose the solutions of equations (39) and (40) in the form 
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denotes the associated Legendre function of the first kind. In view of this, the solution of equation (32) 
is given by 
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where 
nC ‘s are constants. 

 

Hence, the stream function for the region Ғ1 is given by 
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We can see that   
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and  
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and these are recorded here for future use.                                     

 
5.3 Pressure Distribution in Ғ1  
 

The equations (14) and (15), using equation (30) lead to  
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Using the expressions given in equations (45) and (46), on integration we get 
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Thus 
   ts,1  and 

   tsp ,1
 given in equations (44) and (49) give respectively the stream function 

and pressure distribution for the region Ғ1. It can be seen that these involve three sets of constants i.e 

 nA , nB , nC .  

 

6. SOLUTION FOR THE FLOW IN THE REGION Ғ0 
 

We have seen earlier that the flow in the porous region Ғ0 is governed by the equations (18) and (19) 

which lead to the equation (20). The equation (20) implies that the pressure distribution 
   tsp ,0

 in 

Ғ0 is harmonic and hence it is given by 
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where  n  and  n  constitute two  sets  of arbitrary constants to be determined. The velocity 

components ),()0( tsu  and ),()0( tsv can be determined from equations (19) and (50). 

 

In view of the continuity equation in the region Ғ0, we introduce the stream function 
 0  through  
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as in equation (11).Using equations(51) and (19), the stream function 
 0  takes the form 
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Thus, in all, we have five sets of unknown constants nA , nB , nC ,  n  and  n  and these can 

be determined by using the boundary conditions given by the equations (21)-(25). 

 
7. VELOCITY AND MICROROTATION COMPONENTS IN THE REGIONS Ғ0, Ғ1 

 

 The expressions for the velocity components ),()1( tsu  and ),()1( tsv are 
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Further 
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These can be obtained by using the expressions for 
)1(  given in equations (44) and 

)0(p  given in 

equation (50). Thus the expressions for the velocity components
)1(u  , 

)1(v ;     
)0(u  , 

)0(v  ;  can all be 

written explicitly. Using these expressions and those of
)0(p and 

)1(p  in the boundary conditions given 

by equations (21) - (25) we can write the equations that lead to the determination of the arbitrary 
constants. 
 
8. DETERMINATION OF ARBITRARY CONSTANTS 
 
Here again, the procedure is similar to that in [11]. In view of the continuity of the normal velocity 
components on the interface s=s1 given by equation (21), we have 
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As the tangential velocity component is to vanish on the boundary s = s1, the equation (22) leads to  
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The condition (23)  yields 
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The no slip condition on S0 given by (24) leads to 
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The continuity of pressure on the interface s=s1 given by equation (25) yields 
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Using the orthogonality property of Legendre functions and the associated Legendre functions, the 
equations (55)-(59) give rise to the following equations adopting some simple algebraic manipulation: 
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From equations (60) and (61), the coefficient 1nB  can be eliminated and using (62)- (64), we get a 

non- homogeneous linear system of algebraic equations for the determination of constants nC .  

This system is seen to be 
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The above linear system splits into two complementary sub systems where n is even and n is odd. 
The subsystem when n is odd reduces to the homogeneous set of equations  
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and we therefore have C2 = C4 =C6 …=0. Hence An, Bn are all zero when n is even. The explicit 
analytical determination of the odd suffixed constants {Cn} is not possible. In view of this, we propose 
to determine them numerically. Here we truncate the system (67) to fifth order and numerically 
evaluate the coefficients C1, C3, C5, C7 and C9. This is the maximum extent to which the order of 
truncation can be extended since the coefficients of spheroidal wave functions needed for a higher 
order truncation are not explicitly available in the standard literature [26]. 
 
After determining these, it is possible to evaluate numerically the other constants. The details of the 
manipulations are omitted in view of the lengthiness of the expressions and the final system only is 
reported here. 
 

9. DETERMINATION OF DRAG 
 
To evaluate the drag on the body, we need the stress components and the couple stress components. 
The stress tensor is given by equation (1) and we need to evaluate the rate of strain components 

ije and the spin component    

 

The velocity vector q


 can be written in the form 
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The rate of strain components are given by  
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curl has only one non zero component  in the direction of the vector e
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The surface stress tij for the couple stress fluid is given by equation (5) and we find that the only non- 

vanishing components of tij are t , t , t  , t and t . These are given by 
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The stress vector t


on the boundary of the body is given by 
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The stress vector has the component 
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in the direction of the axis of symmetry and 
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in the radial direction of the meridian plane. The resultants of these two vector components over the 
entire surface of the body are obtained by integration and it is seen that the radial component 
integrates to zero. Thus the resultant of the stress vector on the body is the force in the direction of 
the axis of symmetry and this gives the drag on the body. The drag D can be written in the form 
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and this simplifies to  
 

 

 




























































































1

1

)1(
1

2

0
1

)3(
11

2

2

2

1

1

1
22

1

1
2

0
1111

2
112

(1)

1

1
222

1

1

0
11112

2/32

11
)1(

1

1

1
)1(2

1

2

1
2

),()1(),(              

)(

)()1(
)()(1

k 2
            

)(

)(
)()(

)1(4
            

),( 1

1 2

dttiStsiRCs
c

dt
ts

tPt
sQsPss

c

dt
ts

ttP
sQsP

c

ssk

dttspst

sc

n
n

nn

n

n
nnnn

n

n
nnnn











                           (79) 

 
Using the relations  
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drawn from “ The Theory of Spherical and Ellipsoidal Harmonics” due to Hobson [27], the drag 
simplifies to 
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Using the equation (65) we may eliminate the 

series involving the constants nC in the above 

expression for the drag and after further 
simplification we see that the drag due to the 
surface stress is given by the simple formula  

D = 1
3 

3

8
Ac    (83)                     

Introducing the non dimensionalization scheme 
given by 
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It is seen, after dropping the tildes, the non 
dimensional drag D is given by 
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This depends upon the eccentricity of the 
spheroid, the material constant λ, and the non 
dimensional permeability parameter defined 

through
2

)1(

c

k
kp  . 

 
10. NUMERICAL DISCUSSION 
 
The drag on the spheroidal shell is numerically 
evaluated for several parameter values by 

computing the values of the constants { 12 mC } 

by truncating the system in the equation (67) as 
commented earlier. The values of these 
constants are plugged into equation (83) and 
hence the drag D given in equation (86) is 
evaluated for diverse values of λ and kp. The 
variation of the drag is displayed through Figs. 
(1) to (4). 
 
For each value of the permeability parameter kp, 
the drag is increasing as λ increases. An 
increase in λ implies a decrease in the couple 
stress viscosity η. Hence, we notice that as 
resistance to rotation decreases, the body 
experiences a greater drag. For a fixed λ, for an 
increase in kp, the drag is seen to be slightly 
increasing (see Fig. 1.) and the increase is not 
significant. 

An increase in s1 indicates an increase in the 
size of the outer spheroid. The Fig. 2 shows that 
as the size of the outer spheroid increases, for a 
fixed λ, when the size of the inner spheroid is 
fixed, the drag is increasing. Here again, the 
permeability kp has no significant influence on 
the drag. 
 
In Fig. 3, we plotted the variation of drag for fixed 
values of kp and s0, with respect to varying s1 

and diverse values of λ. Here also we note that 
as the size of the outer spheroid increases, the 
drag increases. Also as the couple stress 
parameter λ increases, the drag is significantly 
influenced. Fig. 4 also indicates this aspect.  

 
The Figs. 5 to 10 indicate the streamline pattern 
for diverse values of the couple stress  
parameter λ and permeability parameter kp. The 
evaluation of the stream function needs the 

evaluation of the coefficients 
mn
nd , 

)(sQn , 

)(sQn


,
)(tPn ,

)(tPn ,
),()3(

1 siR n 
,

),()1(
1 tiS n 

 and 
their derivatives at diverse values of (s,t). For 
these, program is developed in C and the stream 
function is evaluated. 
 
 

 

Fig(1) : Variation of drag w ith respect to λ for different values of the 

permeability parameter kp w hen s0=1.2 and s1=2.0
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fig(2): Variation of drag with s1 for different values of the 

permeability parameter kp when  λ=1.5 and s0=1.2
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fig(3): Variation of drag with respect to s1 for different values 

of λ at kp=0.1 and s0=1.2
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fig(4) : Variation of drag with respect to λ for different s1 when 

s0=1.2 and the permeability parameter kp=0.1
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Fig. 5. Streamline pattern for λ =0.5, kp=0.01            Fig. 6. Streamline pattern for λ =0.5, kp=0.5 
 

  
 

Fig. 7. Streamline pattern for λ =1.5, kp=0.01                      Fig. 8. Streamline pattern for λ =2.0 
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Fig. 9. Streamline pattern for λ =3.0,  
kp=0.25 

 
 

Fig. 10. Streamline pattern for λ =2.5, 
kp=0.5 

 
 

For λ = 0.5 or 1.5 and kp = 0.01 or 0.05 there is 
not much of disturbance in the stream lines. 
  
However as λ as well as kp are simultaneously 
increasing, the flow pattern is disturbed and 
dividing streamlines are appearing in the flow 
field. A suitable experimental set up is needed to 
verify this observation. 
 

11. CONCLUSION 
 

In this paper, the authors investigated the slow 
steady flow of an incompressible couple stress 
fluid past a porous spheroidal shell containing a 
rigid confocal spheroidal core and evaluated the 
drag experienced by the body. It has been found 
that the drag experienced by the body is 
increased with the increase in the size of the 
outer spheroid and also by an increase in the 
permeability parameter. The couple stress 
parameter also has a significant effect on the 
drag. Stream lines depicting the flow are also 
plotted.  For greater values of the couple stress 
parameter and the permeability parameter, a 
dividing streamline pattern has been obtained. 
 

ACKNOWLEDGEMENTS 
 

The authors thank the revered referee for 
drawing their attention to the reference [28], and 
propose to rework this problem with this 
approach and communicate separately. 
 

COMPETING INTERESTS 
 

Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Joseph DD, Tao LN. The effect of 

permeability on the slow motion of a 
porous sphere in a viscous liquid. ZAMM. 
1964;44:361-364.  

2. Padmavathi BS, Amaranath. A solution for 
the problem of Stokes flow past a porous 
sphere, ZAMP. 1993;44:178-184. 

3. Qin YU, Kaloni PN. Creeping flow past a 
porous spherical shell. ZAMM. 1993;73:77-
84.  

4. Zlatanovski T. Axi symmetric creeping flow 
past a porous prolate spheroidal particle 
using Brinkman model. Quart. J. Mech. 
Appl. Math. 1999;52:11-126.  

5. Vainshtein P, Shapiro M, Gutfinger C. 
Creeping flow past and within a permeable 
spheroid. International Journal of Multi 
phase flow. 2002;20(12):1945-1963.  

6. Srinivasacharya D. Flow past a porous 
approximate shell. ZAMP. 2007;58:646-
658.  

7. Eringen AC. Theory of micropolar fluids. J. 
Math. Mech. 1966;16:1-18.  

8. Stokes VK. Couple stresses in fluids. Phy. 
Fluids. 1966;9:1710-1715. 

9. Lakshmana Rao SK, Bhujanga Rao P. 
Slow stationary micropolar fluid flow past a 
sphere. J. Engng. Math. 1970;4:209-217.  

10.  Lakshmana Rao SK, Pattabhi 
Ramacharyulu NC, Bhujanga Rao P. Slow 
steady rotation of a sphere in a micropolar 
fluid. Int. J. Engng Sci. 1969;7:905-916. 

11. Lakshmana Rao SK, Iyengar TKV. The 
slow stationary flow of incompressible 



 
 
 
 

Iyengar and Radhika; JSRR, 6(1): 43-60, 2015; Article no.JSRR.2015.130 
 
 

 
60 

 

micropolar fluid past a spheroid, Int. J. 
Engng. Sci. 1981;19:189-220.  

12. Lakshmana Rao SK, Iyengar TKV. Slow 
steady rotation of a spheroid in an 
incompressible micropolar fluid. Int. J. 
Engng. Sci. 1981;19:655-687.  

13. Lakshmana Rao SK, Iyengar TKV. The 
rectilinear oscillations of a spheroid in a 
micropolar fluid. Int. J. Engng. Sci. 
1981;19:161-188.  

14. Lakshmana Rao SK, Iyengar TKV. The 
rotary oscillations of a spheroid in an 
incompressible micropolar fluid. Int. J. 
Engng. Sci. 1983;21:973-987.  

15. Lakshmana Rao SK, Iyengar TKV: 
Analytical and Computational studies in 
couple stress fluid flows, U.G.C. Research 
project report C-8-4/82 SR III; 1985. 

16. Ramkisson H, Majumdar R. Drag on an 
axially symmetric body in the Stokes flow 
of micropolar fluid. Phy. of Fluids. 
1976;19:16-21. 

17.  Ramkisson H. Drag in couple stress fluids. 
ZAMP. 1978;29:341. 

18. Iyengar TKV, Srinivasacharya D. Stokes 
flow of an incompressible micropolar fluid 
past an approximate sphere. Int. J. Engng. 
Sci. 1993;31:115-123.  

19. Iyengar TKV, Srinivasacharya D. Slow 
steady rotation of an approximate sphere 
in an incompressible micropolar fluid. J. 
Engng. Sci. 1995;33(6):867-877.  

20. Srinivasacharya D, Rajya Lakshmi I. 
Creeping flow of micropolar fluid past a 
porous sphere. Applied Mathematics & 
Computation. 2004;153(3):843-854.  

21. Ramana Murthy JV, Srinivasacharyulu N, 
Aparna P. Uniform flow of an 
incompressible couple stress fluid past a 
permeable sphere. Bull. Cal. Math. Soc. 
2007;99(3):293-304. 

22. Radhika TSL, Iyengar TKV. Stokes flow of 
an incompressible couple stress fluid past 
a porous spheroidal shell, Proceedings, 
International Multi Conference of 
Engineers and Computer Scientists. 
2010;3:1634-39. 

23. Stokes VK. Theory of fluids with 
microstructure – An introduction, Springer 
Verlag; 1984.  

24. Payne LE, Pell WH. The Stokes flow 
problems for a class of axially symmetric 
bodies. J. Fluid Mech. 1960;7:529-549. 

25. Iyengar TKV, Radhika TSL. Stokes flow of 
an incompressible micropolar fluid past a 
porous spheroidal shell, Bulletin of the 
Polish academy of Sciences. 
2011;59(1):63-74.   

26. Abramowitz M, Stegun IA. Handbook of 
Mathematical functions with formulas, 
graphs and mathematical tables, Dover 
publications, INC, New York; 1965.  

27. Hobson EW. The Theory of Spherical and 
Ellipsoidal Harmonics, Chelsea Publishing 
Company, New York; 1965.  

28. Dassios G, Hadjinicolaou M, Payatakes 
AC. Generalized eigenfunctions and 
complete semiseparable solutions for 
Stokes flow in spheroidal coordinates, 
Quarterly Journal of Applied Mathematics, 
1994;52(1):157–191. 

 
  ________________________________________________________________________________ 
© 2015 Iyengar and Radhika; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sciencedomain.org/review-history.php?iid=754&id=22&aid=8049 
 


