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Abstract

In this paper, the shape parameters, reliability and hazard rate functions of the exponentiated generalized
inverted Kumaraswamy distribution are estimated using Bayesian approach. The Bayes estimators are
derived under the squared error loss function and the linear-exponential loss function based on dual
generalized order statistics. Credible intervals for the parameters, reliability and hazard rate functions are
obtained. The Bayesian prediction (point and interval) for a future observation of the exponentiated
generalized inverted Kumaraswamy distribution is obtained based on dual generalized order statistics. All
results are specialized to lower record values and a numerical study is presented. Moreover, the
theoretical results are applied on three real data sets.

Keywords: Exponentiated generalized distributions; Bayesian estimation; dual generalized order
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1 Introduction

In recent years, various generalized models have been proposed and their flexibilities over their baseline
distributions when applied to real life data have been established. Interest have been increased among
statisticians by adding one parameter or more to a baseline distribution; to provide great flexibility in
modeling data in several applied areas such as reliability, engineering, economics, environmental sciences,
finance and medical.

Many authors focused on the exponentiated distributions and its applications; for example, Nadarajah and
Kotz [1], Ali et al. [2], Silva et al. [3], Lemonte et al. [4], Elgarhy and Shawki [5] and Rather and
Subramanian [6].

Cordeiro et al. [7] proposed a class of distributions as an extension of the exponentiated type distribution
which can be widely applied in many areas of biology and engineering. Given a non-negative continuous
random variable T, the cumulative distribution function (cdf) of the exponentiated generalized class of
distribution is defined by

F(t|6:,0,) = [1— A= G(t)%]™, 6,,6,>0, (1)

where 6;and 8, are additional shape parameters, the corresponding probability density function (pdf) for (1)
is given by;

6,-1

£(t16:,6,) = 6,0, g1 — 6() " [1 = (1 - 6)%]"", 6,6, > 0. )

Abd AL-Fattah et al. [8] introduced the inverted Kumaraswamy (IKum) distribution and studied some of its
properties. The maximum likelihood (ML) and Bayes estimators, confidence, credible intervals for the
parameters, reliability function (rf) and hazard rate function (hrf) of the IKum distribution based on Type II
censored samples are obtained. The cdf and pdf are given, respectively, by

G(t105,0,) = (1—(1+07%)",  t>0;0,6,>0, 3)

and

9(t105,0,) = 0:0,(1 +)~C (1= 1 +6)%)"* ™ £>0; 6,6,>0. (4)

Fatima et al. [9] proposed the exponentiated IKum distribution; they derived some statistical properties of
this distribution. They used the ML method to estimate the parameters. Mohie El-Din and Abu-Moussa [10]
estimated the unknown parameters of the IKum distribution based on general progressive Type II censored
data using ML and Bayesian methods. ZeinEldin et al. [11] introduced the Type I half-logistic IKum
distribution and derived some statistical properties for it. Also, the methods of the ML, least squares,
weighted least squares estimation and Cramer-von Mises minimum distance estimation are used to estimate
the parameters of the Type I half-logistic IKum distribution.

AL-Dayian et al. [12] obtained the ML and Bayes estimators of the parameters, rf and hrf from IKum
distribution based on dual generalized order statistics (dgos). Usman and ul Haq [13] introduced the
Marshall-Olkin extended IKum distribution; this generalization has some known sub models such as the
Beta Type II, Lomax and Fisk distribution.

Assuming T is a random variable distribution as exponentiated generalized IKum (EG-IKum) distribution

with shapes parameters, § = (6y,85,03,60,) > 0 denoted by T~EG-IKum (8). Substituting (3) in (1), then
the cdf and pdf can be obtained as follows:
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6,191
F(t]0) = [1 —(1-(1-a+p7%)") 2] . £>0,6,>0,, j=1234, 5)

and
4 0,1
f(t19) = 1_[ 6, (1+0)"®s*(1 -1+ t)_93)94_1 (1 -1-a+ t)_93)94) ’
j=1

9,701-1
x[l—(l—(l—(1+t)‘93)94) ] , £>0,6>0. 6)

The rf, hrf and reversed hazard rate function (rhrf) are given, respectively, by
0,\%2 b1
R(t|g)=1—[1—(1—(1—(1+t)—93) ) ] , t>0, 6 >0, %)

[T, 1+ 0“0 (1 - @+ 0"
1-[1—-(1 =01 —=(1+¢t)0:)04)02]61
0,\02—1

«(1-(-a+0)") 1

6,-1

S(i--a+o™)T Q

h(tl9) =

and

rh(t|9) = 1_[ 0, (1 + )=+ (1 — (1 + £)6)" (1 _(-a+ t)_93)94)92—1
j=1

x [1 - (1 -(1-@a+ t)—es)"‘*)gz]_l, t>0,6,>0. ©)

Burkschat et al. [14] studied the dgos that enables a common approach to descending ordered random
variables as reversed ordered order statistics, lower record models and lower Pfeifer records.

Let Tty nmouey Tznmie)s - Tnnmi) be n dgos from an absolutely cdf with corresponding pdf. Hence, the
joint pdf has the form

fT(l,n,m,k)-T(Z,n,m,k)---- T(nnmk) (t(1)’ e t(n)) =
m k—1
k (T v) [ vy (F(t(i))) f(t(i))] (F(t(n))) f(tmy), (10)
where F71(1) = tgqy ... 2ty = F1(0),n€EN, k=1, my,..,m,_; =m,

meER and y,=k+(n—r)(m+1) =1, forll <r<n.

The plots of the pdf, hrf and rhrf of the EG-IKum are given, respectively, in Figs. 1-3. Fig. 1 shows the
flexibility of the density function; where the curves of the pdf are unimodel curves, approximately
symmetric and negative skewed for different values of shape parameters. In Fig. 2, the EG-IKum represents
most major hazard shapes: increasing, decreasing and unimodal failure rates. From Fig. 3 one can observe
that the curves of the rhrf at all the parameter values are monotonically decreasing.

The paper is organized as follows: In Section 2, the Bayes estimators of the parameters, rf and hrf based on
dgos under squared error (SE) and linear exponential (LINEX) loss functions of the EG-IKum distribution
are derived. Bayesian prediction (point and interval) for a future observation of the EG-IKum distribution
are obtained based on dgos in Section 3. Also, a numerical study is presented in Section 4 to illustrate the
theoretical results developed in this paper.
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Fig. 1. The plots of the probability density function Fig. 2. The plots of the hazard rate function
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Fig. 3. The plots of the reversed hazard rate function

2 Bayesian Estimation for Exponentiated Generalized Inverted
Kumaraswamy Distribution
This section is devoted to estimate the parameters, rf and hrf of the EG-IKum distribution based on dgos

using the Bayesian approach, under SEand LINEX loss functions. Also the credible intervals are obtained.
Suppose that Ty nm k), T2nmi) - Tmnmk) are n dgos from the EG-IKum distribution, then the likelihood

function can be derived by substituting (5) and (6) in (10) as follows:

-1

L(8]t) 1_[9" H(lH) Os+D(1 = (14 ¢)" 93)94 ( _(1_(1+ti)_83)94)32
l_[ [1 — 1 — 1 —(+t) 93) ) ]81(m+1)—1

61k—1

X [1 - (1 -(1-a+ tn)—93)94)f’z]
(11)
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The likelihood function can be rewritten as

L(8;t) o< [T, 8 (u) ~ T4, O] e&al0n+ DI o kinCun], (12)

~(63+1) —g5)04"1 _o;\04) %271
where §; = (1+¢)70s*D(1— (1 +¢,)7%) (1 —(1-Q1+t)™%) ) ) (13)

and
w=[1-(1- (= a+e)) | andu, = [1-(1- 1=+ 602 a9

2.1 Point estimation

In this subsection, the Bayes estimators for the parameters, rf and hrf based on dgos under SEand LINEX
loss functions of the EG-IKum distribution are obtained.

Let 64, 8,, 85 and 8, are independent random variables with gamma prior distribution with the pdf as
follows:

Ci

d;’
i— _ 6 .
n(6;) = r(é}_) 0,5 e 40, 0,,d;,c;>0, j=1234,

where ¢;, d; are the hyper parameters which are assumed to be known.
A joint prior density function of 8 = (6, 8,,65,6,) is given by

m(0) o< [T}=, 6;5 e~ 4°i. (15)
The joint posterior density can be derived by using (12) and (15) as follows:

n(@le) « L(elt)m(e),
1 4 n
T[(ng) = 51_[ 9j0j+n_1e—dj6j 1_[ 5; (ui) —1661[(m+1) Z?;ll In(up)+kin(uy)| , (16)
j=1 i=1

where @~ is the normalizing constant .
2.1.1 Bayesian estimation under the squared error loss function

Under SE loss function, the Bayes estimators of the parameters 8 are given by their marginal posterior
expectations as shown below:

Ojsey = E(0j]t) = J, oym(6lt) do, j=1234, (17)

where m(6t) is given in (16).

The Bayes estimators of the rf and hrf under SE loss function can be obtained as follows:

Risey(®) = E(R®|1) = [, R®O(8]t)d8, j=1234, (18)
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where R(t) is given in (7),

and

hise)(©) = E(h(D|t) = [; r®On(8]t) a8, j=1234, (19)
where h(t) is given in (8).
2.1.2 Bayesian estimation under the linear exponential loss function

Under the LINEX loss function, the Bayes estimators for the shape parameters 6 are given, respectively, by

Ojunx = 51 nE(e ™), (20)

where
Beil) = [ e~om(ole) ag. j=1234,
]

where m(6]t) is given in (16).

Also, the Bayes estimators for the rf and hrf based on dgos can be derived as follows:

R (®) = S 1 i (e "RO|t), where E(e *R®t) = [, e *ROn(9]t) a8, @1)
and

R (8) = S 1 E(e™ @) . where E(e™"O|t) = [, e™"On(g]t) dg . (22)
2.2 Credible interval
The 100 (1- w) % credible interval for 8 is (L(t), U(t)).
where

AL <0 <0l = [ nlelan =1 -o.

Then a 100(1 — w)% credibility interval for 6; based on dgos is (Lj (g) U; (g)), where

Plo;> L@l = [ n(olyas =1-5, j=12..4 @3
Lj(t)
and
Plo; > y;(0)|t] = f m(0]t) dg; =§. j=12,..,4 (24)
uj(t
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3 Prediction Based on Dual Generalized Order Statistics

In this section the Bayesian prediction (point and interval) is considered for a future observation of the EG-
[Kum distribution based on dgos under S Eand LINEX loss functions.

The marginal pdf of r®* dgos T (r,n,m, k), 1 < r < n is given by

fEmm(tg)) = 22 LIF(te)]™ F o g ' F (tn) - (25)

where Cr_; = [[121 71, 9m(t) = hy(t) — by, (1), x € [0,1),

__L smt1 _
hm(t)z{ m+1t , m#—1, (26)
—1nt, m=-1.

(See Khan and Khan) [15]

Let T(1,n,m,k),.., T(r,n,mk) be a dgos of size n with the pdf f(t;0) and suppose
Y(1,ny,my, ky), .., Y(ry,ny,my, k), k, > 0,m, € Ris a second unobserved dgos of size n,. Using (5),
(6), (25) and (26), the density function of the dgos Y(s) can be obtained just by replacing t(y with y) as
follows:

0,-1

1T s
frwle) = ](Sl_ll), = (1+¥)

x(1-(1-(+ yo) ™) )

—(05+1) (1 —(1+ y(s))—93)

0,-1

[uy(s)]alys_l grsn_yl (F(y(s))) , (27)

where
-65\02 b2
Uy, = 1—<1—(1—(1+y(s)) ) ) ,

Coor =iV gus) = by (ys) —hy (D), vs =k, + (ny - s)(my + 1), foralll<s<mn,

s-1
;[l_[u ]Bl“"y“)] my # -1
s-1 Y(s) ’ y ’
grsn—y1 (F(y(s)))= (my+1)

61 s—1
-1 I(uy(s)) ] , m, =—1.

For the future sample of size n,,, let Y5 denotes the st ordered life time, 1 < s < n,, the pdf of the dgos
Y(s) from EG-IKum distribution is derived by substituting (28) in (27).

(28)

Case one: for m,, # —1

Hl}':l 0}’ Cs—l
(my + 1) (s = 1!

x (1 -(1-(+ Y(s))_93)94)

_( ) —_
(1 +y) " ( -(1+ye) 93)

621 [uy(s)]em_l [1 3 [uy(s)]el(myﬂ)]s—l

fivsl8) =

Using the binomial expansion, one obtains
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H‘}:l 9]‘ Cs—l -1

—(65+1) RN
m(l +y) (1 -(1+y) 3)
N !

X (1 - (1 -(1+ y(s))—e3)194)92—1321(_1)c (s ; 1) [uy(s)]el(ysﬂ(myﬂ))_i'
¢=0

fivsl8) =

let
_ Cs— _ -1 —
= ey e = () and @ = (s + sy + ).
Then
4 04-1
—(63+1) —9-\%4—
filvsle) = fl_[ 6, (1+ye) " (1 - (1+ye) 3)
j=1
—057\04 62-1 o 01w—1
X <1 - (1 - (1 + Y(s)) ) ) ¢=0T; [uY(s)] ’ Y > 05 6;>0.
Case two: for m,, = —1
40, kS 0,5t - N
R0le) =R (1 ) (1= () ™)

0,-1

[uy<s)]91ky_1 [_l '(“y(s))]s_i'y(s) >0;6; > 0.

The Bayesian predictive density (BPD) function can be derived as follows:

x (1 -(1-(+ Y(s>)_93)94)

fslt) = J, fvele) m(8]t) de,
where n(g | g) is the posterior density function of 8 and f (y(s) | Q) is the pdf of (5 .
Substituting (16), (29) and (30) in (31), the BPD of y() givent is obtained as given below
Case one: form,, # —1
AlwlD) = [ AGwle)n(ele) de.

Case two: for m,, = —1

K0l = [ £Owlen(ol) do.

3.1 Point prediction

(29)

(30)

(€2

(32)

(33)

The Bayes predictor (BP) of the future dgos Y can be derived under SE and LINEX loss functions as

follows:
Case one: for m,, # —1

The BP of the future dgos Y) can be obtained under SE loss function using (32) as given below
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Yose = EGwlt) = [, v Ailyelt) dye.

The BP of the future dgos Ys) can be derived under LINEX loss function using (32) as follows:

* -1 ©
V) anx) = Tl I‘Efo e™® fl(y(s)lg) dy(s)-

Case one: form,, = —1

The BP of the future dgos Y(sy can be obtained under SE loss function using (33) as given below

Yise = E(vslt) = fooo)’(s) L(slt) dyes.

The BP of the future dgos Y) can be derived under LINEX loss function using (33) as follows:

* -1 o _
Yioann = 51 1E [ e™O f(y|t) dye).

3.2 Interval prediction

(34

(35)

(36)

(37

The Bayesian predictive bounds (BPB) of the future dgos Y{) can be obtained using (32) and (33) as follows:

Case one: for m,, # —1

@ w
P[Yi) > Ly (8)]t] = f fi(yt) dodyy =1 - >
Lisy(t) /8

and

P[Y(s) > U(s)(E)lE] = f;j(s)(z) fg fl(y(s)|£) dfdys) = %
Case two: form, = -1

P[Y(s) > L (£)|£] = fLTs)(E) fg fz(Y(s)lﬁ) dfdys) =1- g,
and

w

PV > U O] = fy 0 Jo ol lt) dodyey =3
BPB can be obtained by solving the previous equations numerically.

4 Numerical Results

(38)

(39)

(40)

(41)

This section aims to illustrate the theoretical results of the Bayes estimates and Bayes predictors under SE
and LINEX loss functions. Numerical results are presented for EG-IKum distribution based on lower record

values through a simulation study and some applications.

4.1 Simulated example

In this subsection, a simulation study is conducted to illustrate the performance of the Bayes estimates and
predictors for different sample sizes of lower record values and for different population parameter values
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from EG-IKum distribution. The performance was evaluated through a measurement of accuracy. In order to
study the precision and variation the estimates, it is convenient to use the estimated risks (ERs) based on
lower record values.

I. Bayesian estimation

The lower record values can be obtained as a special case from dgos by setting m = —1,k = 1, the
estimation results obtained in Sections 2 can be specialized to lower records. The averages for the Bayes
estimates of §;, wher¢j = 1,2,3,4, are evaluated. Also, rf and hrf and their average estimates, ERs are
computed based on lower record values according to the following steps:

a. For given values of 8;,j = 1,2,3,4, random samples of size n is generated from EG-IKum distribution
observing that if U is uniform distribution (0,1), then

1 1 1 1
tij = [(1 — (1 — (1 — (U;j)P1)82)84) 8 — 1| , is EG-IKum () distribution.

b. For each sample size n, consider that the first observation is the first lower record value t; then denote
it by R, and the second observation t, denote it by R, ; which is smaller than the maximum (t; > t;)
record and if t; < t, ignore it and repeat until you get a sample of record values (Rv).

c. The averages for the Bayes estimates of the parameters, rf and hrf under SE and LINEX loss functions
are computed; at specified number of surviving units with population parameter values 6; and hyper
parameters of the prior distribution, the computations are performed using R programming language.

d. Tables 1 and 2 present the Bayes averages under SE and LINEX loss functions of the parameters and
their ERs and credible intervals based on lower record values for different population parameter
values for 6; = (0.8,0.2),6, = (0.6,0.3),6; = (1.2,0.4) and 6, = (1.5, 0.7) based on records of
size Rv =3, 5, 7 and number of replications (NR) = 10000.

e. Table 3 displays the Bayes averages and 95% credible intervals of the rf and hrf att, = 0.5,1, 2 from
EG-IKum distribution based on lower record values for different samples of records of size Rv= 3,7
and NR = 10000.

I1. Bayesian prediction

The BP for the future lower record values can be obtained from the above results of the dgos when m = —1,
k =1,m, =—1andk, = 1, as given below:

a. Determining the value of' s, 1 < s <n,, which is the index of the future unobserved lower record
value from the second sample.

b. Using (36), (37), (40) and (41), the BP for the future lower record is calculated under SE and LINEX
loss functions, respectively.

c. Table 6 displays the BP and 95% credible intervals for the future lower record values of ¥(5) from EG-
IKum distribution, where Rv = 6,6, = 0.8,0, = 0.5,6; = 1.2and 6, = 0.7.

4.2 Applications

In this subsection, three applications to real data sets are provided to illustrate the importance of the EG-
IKum distribution based on lower records and to demonstrate how the proposed method can be used in
practice. Tables 4 and 5 display the Bayes estimates of the parameters, rf, hrf and standard error for the real
data based on lower records. The BP and 95% credible intervals for the future lower record values Y5y from
the three real data are shown in Table 7.

To check the validity of the fitted model, Kolmogorov-Smirnov goodness of fit test is performed for each
data set and the p values in each case indicates that the model fits the data very well.
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Table 1. Bayes averages, estimated risks and credible intervals based on lower records

(6,=0.8,0,=0.6,0;=1.2,0,=1.5, NR =10000)

Ry Loss functions Estimators Average ER LL UL Length
01 0.8013 0.0021 0.7993 0.8994 0.0032

SE 0, 0.6020 0.0020 0.5999 0.6034 0.0036

03 1.1983 0.0016 1.1968 1.2001 0.0033

0; 1.4987 0.0013 1.4957 1.5004 0.0047

3 01 0.7979 0.0030 0.7960 0.7999 0.0039
LINEX 05 0.5983 0.0019 0.5958 0.6007 0.0048

03 1.2007 0.0006 1.1997 1.2013 0.0015

0; 1.4994 0.0007 1.4971 1.5006 0.0035

0; 0.7991 0.0014 0.7973 0.7994 0.0028

SE 6, 0.6005 0.0009 0.5986 0.6018 0.0032

03 1.1991 0.0009 1.1975 1.2000 0.0025

0, 1.4992 0.0009 1.4969 1.5005 0.0037

5 07 0.7978 0.0029 0.7963 0.7993 0.0030
LINEX 05 0.5994 0.0008 0.5974 0.6003 0.0029

03 1.1994 0.0006 1.1978 1.2000 0.0022

0, 1.4993 0.0005 1.4980 1.4980 0.0021

0; 0.8000 0.0004 0.7991 0.8002 0.0013

SE 05 0.5994 0.0008 0.5975 0.6005 0.0019

03 1.1992 0.0007 1.1980 1.1998 0.0023

0, 1.4994 0.0006 1.4977 1.5005 0.0018

7 07 0.8003 0.0005 0.7994 0.8007 0.0013
LINEX 6, 0.5990 0.0008 0.5981 0.5998 0.0017

03 1.1998 0.0003 1.1988 1.2006 0.0018

0, 1.4994 0.0005 1.4981 1.5003 0.0018
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Table 2. Bayes averages, estimated risks and credible intervals based on lower records

(6;=0.2,0,=10.3,0;=0.4,0, = 0.7 and NR = 10000 )

Ry Loss functions Estimators Average ER LL UL Length
01 0.1990 0.0060 0.1973 0.2002 0.0029

0, 0.2985 0.0046 0.2969 0.3008 0.0040

SE 03 0.3989 0.0035 0.3972 0.4003 0.0031

0; 0.6980 0.0031 0.6964 0.6997 0.0033

3 07 0.2027 0.0160 0.1995 0.2046 0.0051
05 0.3005 0.0024 0.2987 0.3015 0.0028

LINEX 03 0.4018 0.0050 0.3999 0.4027 0.0028

0; 0.6996 0.0013 0.6977 0.7004 0.0027

07 0.2007 0.0050 0.1993 2.0016 0.0023

05 0.2991 0.0028 0.2977 0.3000 0.0022

SE 03 0.3990 0.0027 0.3979 0.4002 0.0023

0, 0.7017 0.0028 0.6996 0.7030 0.0033

5 0; 0.1993 0.0056 0.1975 0.2007 0.0031
0, 0.3007 0.0024 0.2991 0.3015 0.0024

LINEX 03 0.3998 0.0017 0.3984 0.4009 0.0025

0, 0.6988 0.0019 0.6975 0.6997 0.0022

01 0.1995 0.0031 0.1986 0.1997 0.0017

0, 0.2991 0.0022 0.2983 0.2998 0.0014

SE 0; 0.3997 0.0013 0.3987 0.4005 0.0018

0, 0.7001 0.0007 0.6990 0.7011 0.0021

7 07 0.1999 0.0023 0.1987 0.2007 0.0020
0, 0.2992 0.0022 0.2979 0.3000 0.0020

LINEX 0; 0.4006 0.0024 0.3995 0.4015 0.0021

0, 0.7011 0.0019 0.6990 0.7022 0.0022
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Table 3. Bayes averages, estimated risks and credible intervals for the rf and hrfatt, = 0.5,1, 2,
from EG-IKum distribution based on SE and LINEX loss functions for different
sample size of records Rv, and repetitions NR = 10000

Ry to Loss functions  Estimators Average ER LL UL Length
SE R*(ty) 0.7802 0.0014 0.7782 0.7812 0.0030

h*(ty) 0.4581 0.0027 0.4557 0.4596 0.0039

0.5 LINEX R*(ty) 0.7801 0.0012 0.7785 0.7810 0.0025

h*(ty) 0.4594 0.0013 0.4586 0.4601 0.0015

SE R*(ty) 0.6368 0.0006 0.6356 0.6373 0.0017

3 h*(ty) 0.3541 0.0082 0.3507 0.3562 0.0054
1 LINEX R*(ty) 0.6378 0.0020 0.6361 0.6388 0.0026

h*(ty) 0.3580 0.0046 0.3560 0.3588 0.0027

SE R*(t,) 0.4751 0.0015 0.4738 0.4764 0.0025

h*(ty) 0.2398 0.0092 0.2382 0.2418 0.0035

2 LINEX R*(ty) 0.4770 0.0038 0.4751 0.4780 0.0029

h*(ty) 0.2401 0.0071 0.2391 0.2410 0.0019

SE R*(ty) 0.7797 0.0007 0.7788 0.7804 0.0016

h*(ty) 0.4584 0.0019 0.4569 0.4597 0.0027

0.5 LINEX R*(ty) 0.7799 0.0009 0.7790 0.7805 0.0014

h*(ty) 0.4589 0.0007 0.4581 0.4596 0.0015

SE R*(ty) 0.6365 0.0005 0.6359 0.6371 0.0012

7 h*(ty) 0.3577 0.0041 0.3556 0.3587 0.0031
1 LINEX R*(ty) 0.6360 0.0012 0.6351 0.6368 0.0017

h*(ty) 0.3574 0.0033 0.3562 0.3587 0.0025

SE R*(ty) 0.4886 0.0010 0.4874 0.4894 0.0020

h*(ty) 0.2053 0.0023 0.2045 0.2057 0.0019

2 LINEX R*(t,) 0.4891 0.0037 0.4878 0.4899 0.0037

h*(ty) 0.2056 0.0014 0.2048 0.2064 0.0014
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Table 4. Bayes estimates for the parameters and standard errors for the real data based on lower records

Application Ry Loss functions Estimators Estimates Standard Errors
SE 07 0.9009 8.88e-05
0, 0.9001 1.01e-04
I 0; 0.8990 1.04e-04
3 0; 1.7008 1.12e-04
LINEX 01 0.9007 9.11e-05
0, 0.8978 1.84e-04
0; 0.9014 1.53e-04
0; 1.7012 2.27e-04
SE 01 0.9009 3.94e-05
0, 1.5994 6.25e-05
0; 0.8999 5.94e-05
I 4 0; 6.0491 4.04e-05
LINEX 01 0.8996 4.54e-05
0, 1.5994 4.33e-05
0; 0.9009 6.57e-05
0; 6.0501 4.97e-05
SE 07 0.5996 5.26e-05
0, 0.8992 8.39¢-05
0; 0.4000 6.54e-05
I 7 0; 0.6982 2.17e-04
LINEX 01 0.6031 2.88e-04
0, 0.9006 8.60e-05
0; 0.4015 1.83e-04
0; 0.7004 1.06e-04
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Table 5. Bayes estimates for rf, hrf and standard errors from EG-IKum distribution for the real data based on lower records

Application Ry Loss functions Estimators Estimates Standard Errors
SE R*(to) 0.9501 8.68e-05
h*(tg) 0.3421 1.49¢-04
I 3 LINEX R*(to) 0.9486 8.06e-05
h*(ty) 0.3426 8.46e-05
SE R*(to) 1.0004 5.38e-05
h*(tg) 0.0003 4.46e-05
I 4 LINEX R*(to) 0.9981 9.61e-05
h*(tg) 0.0001 2.94e-05
SE R*(to) 0.6899 9.75e-05
h*(tg) 0.8340 3,32e-04
111 7 LINEX R*(to) 0.6914 8.67e-05
h*(t) 0.8344 2.53e-04
Table 6. Point predictors and 95% credible intervals for the future lower record values y(;, from EG-IKum distribution
(Rv=6,0,=0.8,0,=0.560;=1.2,0,=0.7)
s Loss functions Yis) LL UL Length
1 SE 0.8995 0.8977 0.9006 0.0028
LINEX 0.9004 0.8997 0.9009 0.0012
3 SE 0.9011 0.8990 0.9018 0.0029
LINEX 0.9009 0.8998 0.9015 0.0017
6 SE 0.9131 0.9097 0.9156 0.0059
LINEX 0.9091 0.9074 0.9100 0.0025

108



Abd Al-Fattah et al.; JAMCS, 36(1): 94-111, 2021; Article no.JAMCS.65158

Table 7. Point predictors and 95% credible intervals for the future lower record values yE‘S) from the

three real data

Application s SE LINEX
Y(s)(sE) Credible interval Yis$)anx) Credible interval
LL UL Length LL UL Length
I 1 1.2007 1.1989  1.2015 0.0026  1.1996 1.1986 1.2013  0.0026
3 1.2012 1.1994 1.2027 0.0033  1.1999 1.1974 1.2014  0.0040
I 1 1.2020 1.1999 1.2038  0.0039 1.1986 1.1973  1.1995 0.0022
3 1.2019 1.1993  1.2033  0.0040 1.2017 1.1999  1.2026  0.0027
I 1 0.9008 0.8987 09018  0.0030 0.8994 0.8982  0.9002 0.0020
5 090213 0.8999 09048  0.0048 0.9013 0.8995 0.9032 0.0036
L The first application is given by Hinkley [16]. It consists of thirty successive values of March

IL

I1I.

precipitation (in inches) in Minneapolis/St Paul. The data is 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75,
2.48, 0.96, 1.89, 0.90, 2.05.

From the original data, one can observe that the following lower record values; 0.77, 0.47, 0.32, with
p-value = 0.1866.

The second application is a real data set obtained from Lee and Wang [17]. It represents the remission
times (in months) of a random sample of 128 bladder cancer patients. The data is 08, 2.09, 3.48, 4.87,
6.94, 8.66, 13.11, 23.63, 0.2, 2.23, 0.26, 0.31, 0.73, 0.52, 4.98, 6.97, 9.02, 13.29, 0.4, 2.26, 3.57, 5.06,
7.09, 11.98, 4.51, 2.07, 0.22, 13.8, 25.74, 0.5, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 19.13, 6.54, 3.36,
0.82, 0.51, 2.54, 3.7, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 1.76, 8.53, 6.93, 0.62, 3.82, 5.32, 7.32,
10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 3.25, 12.03, 8.65, 0.39, 10.34, 14.83, 34.26, 0.9, 2.69, 4.18, 5.34,
7.59, 10.66, 4.5, 20.28, 12.63, 0.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 6.25, 2.02,
22.69, 0.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 8.37, 3.36, 5.49, 0.66, 11.25, 17.14,
79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 12.02, 6.76, 0.4, 3.02, 4.34, 5.71, 7.93, 11.79, 18.1, 1.46,
4.4,5.85,2.02,12.07.

From the original data, the following lower record values are: 8, 2.09, 0.2, 0.19, with p-value =
0.2126.

The third application is the vinyl chloride data obtained from clean upgrading, monitoring wells in
mg/L; this data set was used for Bhaumik et al. [18]. The data are: 5.1, 1.2, 1.3, 0.6, 0.5, 2.4, 0.5, 1.1,
8.0, 0.8, 0.4, 0.6, 0.9, 04, 2.0, 0.5, 5.3, 3.2,2.7,2.9,2.5,23, 1.0, 0.2, 0.1, 0.1, 1.8, 0.9, 2.0, 4.0, 6.8,
1.2,0.4,0.2.

From the original data, one can observe the following lower record values; 5.1, 1.2, 0.6, 0.5, 0.4, 0.2,
0.1, where the p-value = 0.1845.

4.3 Concluding remarks

(e]

From Tables 1 and 2 one can notice that the ERs of the Bayes averages of the shape parameters
decrease when the sample size of Rv increases. Also, the lengths of the credible intervals become
narrower as the sample size of records increases.

It is clear from Table 3 that the ERs of rf and hrf performs better when the sample size

of Rv increases, and the lengths of the credible intervals get shorter when the sample size of Rv
increases.
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(e]

(o]

One can observe that the ERs for the estimates of the parameters, rf and hrf under LINEX loss
function have the less values than the corresponding ERs of the estimates under SE loss function.

From Tables 6 and 7, the BP and the lengths of the BPB increase when s increases.
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