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Abstract

In [1], C. Park generalized the notion of the quasi-narspace, i.e. he introduced the notion of the quasi
2-normed space. He proved several properties of thé 2rumasm. In [2], M. Kir and M. Acikgoz gave thg
procedure of completing the quasi 2-normed space. Sewemglialities relating the quasi 2-normged
spaces are given in [3,4,5]. Later, in [6], some progedfehe convergent sequences in quasi 2-normed

spaces are proven. In this paper, we will introduce the @uasim of the spacéP(x), 0< p<1 and
we will prove several inequalities relating the quasi 2mof this space.
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1 Introduction

In 1965, S. Gah ler introduced the 2-normed spacesfid],in [8], whenn =2, is introduced 2-norm in the

spaceLl(,u) . One of the axioms of the 2-norm is the inequalitpafallelepiped which is fundamental in the
theory of 2-normed space [4]. As in the normed spaces, ®, Pathe 2-normed spaces, replaces this
inequality with a new condition, which actually gives the follogvdefinition of the quasi 2-normed space.

Definition 1 ([1]). Let L be a real vector space witthmL =2 . Quasi 2-norm is a real function
[ICOl:LxL - [0 )which satisfies:

a) |Ix,y|k C forall x,yOL and||x,y |E Cif and only if the se{x y} is linearly dependent;
b) 11X,y lElly x [[forall x,yOlL;

c) |lax,ylFle Hlx y | forall x,yOL and for eache OR,and

d) There exists a constamt > 1 such thaf|x+y,z[£ K(||x,z |} |ly.z |, forall x,y, zO L.

The pair (L,]|CO[) is calledquasi2-normed spaceThe smallest numbét that satisfies the conditio is
called themodul of concavitpf the quasi 2-nornfi L.

In [2], M. Kir and M. Acikgoz give several examplektrivial quasi 2-normed spaces and they condider
guestion of completing the quasi 2-normed spacgjrafil], C. Park gives a characterization of theag 2-
normed space, i.e. he proved the following theorem.

Theorem 1 ([1]). Let (L,||C|) be a quasi 2-normed space. Then there existd < p<1 and an equivalent
quasi 2-norm||C| onL such that

lix+y.zIf<lixz R+ 1y z 5, @)
forall x,y,z0 L.m
In connection with this theorem 1, C. Park, in fijjes the following definition.

Definition 2 ([1]). The quasi 2-norm of theorem 1 is call@ip)—normand the quasi 2- normed spéces
called (2, p)—normed space

2 TheQuas 2-norm of LP(u), 0<p<1

In this part, we will introduce the quasi 2-normtloé spacel” (1), 0< p<1. For that purpose, we will use
the following two well known inequalities.

Lemmal. If p0d(0,1) anda,b=0, then

(a+bP < aP+bP, 2

and equality holds if and only &#=0 orb=0. =
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Lemma?2. If g>1 andc,d>0, then

2 9c+d)d< 9+ dI, ®)
and equality holds if and only = d .

Theorem 1. Let (Y,M) be a measurable space, be a positive measure av and let X = LP(),
p0(0,1) be the space

X={f| f:Y SR, [| f|P du<+e}.
Y

Then the functior|CL]|:.L° @ XLP @)~ R, defined by

f(x) f(y)

f,
If.glE{]f Ig(x) s

YxY

‘Pd(uxu)}é. 4

where ux 41 is the direct product of the measuye is the quasi 2-norm of the spade= LP(1).

Proof. a) Because of the inequality (2), we have

P=1f 6)g(y)- 9(x) f(Y P

|‘f(x) f(y)
9(®¥ o(y

<( g 1+ 1909 F(NIP
< F 9P +1g(x) f(Y P,

forall f,g0LP () and for each(x, y) Yx Y. Now, using (4), the properties of the absolute value la@d t
properties of integrating on a direct product of the meateispacegY xY, Mx M, ux ), we obtain

) f(y) -
f, duxu)P
1.0l {Ylylg(x) g(y)‘lp (> )}
<{TAfANIP+ o f(»)lp)C(ﬂX/J)}%’
YxY
= J1EIPLa) 1P d@x )+ [ 1P F(y) P dixp)p
YxY Y< Y

={LFOIIP dufl gD 1P du+[1 g ]| f(YP dup
Y Y Y Y

=2P{I f(QIP ddP{ | A YIP dib P <+
Y Y

which means that the functidfC|.LP @ % LP @z )— R is well defined.
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b) Let f,gOLP(u). From the definition (4) directly follows thdtf ,g [& 0. Let || f,g |E O, for
some f,gOLP(u), f #0,g# 0 in respect of the measuge, i.e.

) f(y)

Pd(ux %:0.
" g(y)l (2% )}

{1

YxY

Then

‘f(X) f(y) —o
g(® oy

almost everywhere in respect to the meaguxg/, which means thaff (x)g(y)— o ¥ f( y =0 almost
everywhere in respect of the measyr& . Therefore,

Wi g ={(x 91 f(3d Y- ¢ x € y=0}

is a set with measure 0, i.6u* ()(\W; 4) =0. The assumptionf #0, g # 0 in respect of the measuye,
implies that

Us ={x| xOY, (320} andUq ={x| xOY, d ¥#0}
are sets with positive measure ifgU¢) >0 u p4Ugy) >0.

We will prove that
HUf nUg)>0, pUs\Ug)=0and uUg\Uy)=0.
Let us suppose tha#(U nUy) =0. Then, without loss of generality, we can assuna¢thy nUgy =0

in respect of the measure. For every(x y)LUs xUy we have thatf (x) 20, g(y)# 0, g(¥)= 0 and
f(y)=0, so

FOJa(y—a3 f(y= (¥ ¢ y#0.

Therefore(x, y)OW; 4, i.e. U xUg OWs 4. Using the properties of the measywey/, i.e. from its
definition we get that

(> p)Ws g) = (uxp)(Ug xUg)
=uU¢)uUg) >0,

which contradicts(4/x t)(Ws 4) =0. So, we conclude tha#(U¢ nUy) >0.

Let us now suppose that(U ¢ \U4) >0. If (x,y)T(Us \Ug)x(Us nUg), thenxOUy, xOUg, yOUy¢
and yOUg, so f(x) #0, g(X) = 0, f(y)# 0and g(y) # 0, which implies that

FOJa(-a® ((y= ¥ ¢ y#0.
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Therefore(U ¢ \Ug)x(U ¢ nUgy) OWs 4. Using this and the fact thatUs nUg) >0, we get that

(> 1)(Ws g) = (uxm)[(Ug\Ug) x(U g nUg)]
=puU ¢ \Ug)uU¢ nUgy) >0,

which, again, contradicts/> u)(\Ws 4) =0. We conclude thatr(U¢ \Ug4) =0. Analogously, it can be
proved thatu(Ug\U ¢) =0.

The equalities

Uf :(Uf \Ug)D(Uf ﬂUg), Ug :(Ug\Uf)D(Uf ﬂUg),
HU¢\Ug)=0andpUg\Uy)=0,

imply thatU¢ =Ug =U , in respect of the measywe
Clearly, 4(U) > 0. For eachx[OU , we define the set

Uy ={yl yOU, (X dy- Yy ¢ x#0}.

We will prove that there existgy U such that,u(UXO):O. Let us suppose the contrary, i.e. that

uU,) >0, for eachxOU . f =g =0 almost everywhere of\U in respect to the measyre implies
that f =g =0 almost everywhere olf \ U, in respect to the measyre and

| £009(¥)- g% ((YIP>0o0nu,.

Then
hO=[1 f( (D= o3 (Y dy
Y
= [1f00g(0- 9N f(YP >0,

U

X

which implies that

fO) f(y)

) g(x a(y

YxY

P d@x )= [h()du= [ H(3 >0,
Y U

which contradicts the assumpti¢jrf ,g |[£ 0. Therefore, there must exigg OU such that
fOo)a(y) - d») f(y=0,
almost everywhere ob. Since f (X5) # 0, g(xy) Z O we get thatg(y) = 906) f(y), for eachylU , which

f (%)

together with the factf =0,g=0on Y \U, gives thatg(y) = % f(y) ma Y, ie. g(y)=af(y), where
9(%)

a= % . So, we proved the conditiopfrom the definition 1.
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c) Forall f,gOLP (), it follows that

f(x)
a(X¥
a® oy
f) f(y)

NfglE{] |

YxY

={ ]l

YxY

f(y)‘ P duxp)f

|P Ol(,uxﬂ)}E g fll

i.e. the conditiorii) from the definition 1 is true.
d) Let f,g0OLP(w) andaOR. Then

af(x) af(y)
g(®» oy
f) f(y)
a® oy

lat glE (] | ‘Pd(uxu)ﬁ

YxY

=al{ |l Pd@=my 4aldif gl

YxY

i.e. the conditionii) from the definition 1 holds.
e) Using the inequality (2), and then the inequalit3), (with q:%, we get that, for all

f,9,h0 P (u), it follows that

f f
iegnief |00 900 T SN p gy
YxY
(00 10, [908 €3] oy
<CJ Ul ‘| "r(x LI
9 LIS T
<CJ Ul 900 Py
_ f(x) (y) P d(ux 9% 910 g (x 1ve
Ul wogl" dtemae 18 NP dtea
11600 () o) o !
<2° pd p pd X p
<27 [y g 96 P d@xsm))

=20 (I h Ik g h 1D,

!
which means that, foK =2P >1, the conditionv) from the definition 1 holds.

In [1], C. Park defines Cauchy sequence, convergegtience and complete quasi 2-normed space i.e. he
gives the following definition.

Definition 3. Let L be a quasi 2-normed space.

a) The sequencéx} n in L is aCauchyif

lim || Xq = X,, 2|E O, for eachzO L.
n- oo
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b) The sequencgX} ng in L isconvergentf there existsx 0 L such that

lim || X = %, z|E O, for eachzO L.
n—- oo

The vectorxD L is called theboundaryof the sequencéXy e -

c) A quasi 2-normed space in which every Cauchy sequence is convergent iiecdca quasi
2-completglaquasi2-Banach) space

Problem. Whether the quasi 2-normed spad®(x), 0< p <1 with the quasi norm, introduced by (4), is
complete?

3 Two Inequalitiesin LP(u),0<p<1 asQuasi 2-normed Space

For the quasi 2-normed spaces in [4], it is praenfollowing Lemma.

Lemma 3. If L is quasi 2-normed space with modul of conca¥ty 1, then, for eactn>1 and for all
Z, %, %,..., % O L, it follows that

n n
12 %,z i KFIO%OIY iy 7| . 5)
i=1 i=1
From Lemma 3 and the proof of Theorem 1, diredailjofvs the consequence.

Corollary 1. Let LP(1),0< p<1be a quasi 2-normed space in which the quasi &isrgiven by (4).
Then for all f;, fy,...,f, g OLP ), n>2, it follows that

él’f[logz M-I D

IS % .9 S g ®)
i=1 i=1

19
Proof. It is enough to tak&k =2P  >1in the inequality (5)m

In the following theorem, we will prove strictereiquality then the inequality (6). For that purpose, will
use the following well known inequality.

Lemma4. Let tO[1,). Then for allag, ay,...,a, 0 [0,0), it follows that

Sa)<iiyd.m
i=1 i=1

Theorem 2. Let LP(u), 0< p<1 be a quasi 2-normed space in which the quasi Bisrgiven by (4).
Then for all f;, f5,...,f, ,g 0 LP (), it follows that

13 gl S0 ol )
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Proof. Sincet =% >1, the inequality (4), the properties of the intégkemma 1 and Lemma 4 imply that

i '”ﬂP wxpp
009§y
90 oy
ORI
90 o
(09 1y 1
000 oy P d(ex 1)}
109 ()
9 oy

HZﬁQF{IIZ

YxY i=1l

<{ ] (ZI DPd(uxp}®

YxY i=1

<{IZI

YxYi=1l

SO

i=lyxy

YN

i=1 yxy

=" lef.,gll

[Pd(px )}

P d(ux)?

Clearly, the inequality (7) is stricter than theguality (6), since for each= 2, it holds n < 24092 ("-11
and the equality holds fan=2X k=1,2,3,...

1
To prove thatn® is the best possible constant, it is enough te taatE and F are measurable sets such
that 4(E) =a <o, y(F)=f <0, g=1zand E = E and f; =1g ,fori=12..n.Then

uzngw&wmmﬁxmwﬂzuaumpqmﬁé
WVMM%ﬂWgﬂBﬂﬁt

1_

n® §AMuxax95:ﬁ“§utgn-

i=1

4 Conclusion

In this paper, it's introduced the quasi 2-normthaf spacel” (1), 0< p<1 and there are proven several
inequalities relating the quasi 2-norm of this gpaiso is given the following open problem:

Whether the quasi 2-normed spatB(x), 0< p<1 with the quasi norm, introduced by (4), is
complete?
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