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Abstract 
 

In [1], C. Park generalized the notion of the quasi-normed space, i.e. he introduced the notion of the quasi 
2-normed space. He proved several properties of the quasi 2-norm. In [2], M. Kir and M. Acikgoz gave the 
procedure of completing the quasi 2-normed space. Several inequalities relating the quasi 2-normed 
spaces are given in [3,4,5]. Later, in [6], some properties of the convergent sequences in quasi 2-normed 

spaces are proven. In this paper, we will introduce the quasi 2-norm of the space ( ),pL µ  0 1p< <  and 

we will prove several inequalities relating the quasi 2-norm of this space. 
 

 
Keywords: Quasi 2-norm; (2, )p − norm; modul of concavity. 

 
2010 mathematics subject classification: 46B20.  

Original Research Article 



 
 
 

Malčeski et al.; BJMCS, 15(2): 1-9, 2016; Article no.BJMCS.22885 
 
 
 

2 
 
 

1 Introduction  
 
In 1965, S. Gäh ler introduced the 2-normed spaces [7], and in [8], when 2n = , is introduced 2-norm in the 

space 1( )L µ . One of the axioms of the 2-norm is the inequality of parallelepiped which is fundamental in the 
theory of 2-normed space [4]. As in the normed spaces, C. Park, in the 2-normed spaces, replaces this 
inequality with a new condition, which actually gives the following definition of the quasi 2-normed space.  
 
Definition 1 ([1]). Let L  be a real vector space with dim 2L ≥ . Quasi 2-norm is a real function 
|| , ||: [0, )L L⋅ ⋅ × → ∞  which satisfies: 

 
a) || , || 0x y ≥ , for all ,x y L∈  and || , || 0x y =  if and only if the set { , }x y  is linearly dependent;  

b) || , || || , ||,x y y x=  for all ,x y L∈ ; 

c) || , || | | || , ||,x y x yα α= ⋅  for all ,x y L∈  and for each ,α ∈ R and  

d) There exists a constant 1K ≥  such that || , || (|| , || || , ||)x y z K x z y z+ ≤ + , for all , ,x y z L∈ .  
 
The pair ( ,|| , ||)L ⋅ ⋅  is called quasi 2-normed space. The smallest numberK that satisfies the condition d) is 

called the modul of concavity of the quasi 2-norm || , ||⋅ ⋅ .  

 
In [2], M. Kir and M. Acikgoz give several examples of trivial quasi 2-normed spaces and they consider the 
question of completing the quasi 2-normed space, and in [1], C. Park gives a characterization of the quasi 2-
normed space, i.e. he proved the following theorem. 
 
Theorem 1 ([1]). Let ( ,|| , ||)L ⋅ ⋅  be a quasi 2-normed space. Then there exists ,p  0 1p< ≤  and an equivalent 

quasi 2-norm ||| , |||⋅ ⋅  onL  such that  
 

||| , ||| ||| , ||| ||| , |||p p px y z x z y z+ ≤ + ,                      (1) 
 
for all , ,x y z L∈ . ■ 

 
In connection with this theorem 1, C. Park, in [1], gives the following definition.  
 
Definition 2 ([1]). The quasi 2-norm of theorem 1 is called (2, )p − norm and the quasi 2- normed space L  is 

called (2, )p − normed space. 
 

2 The Quasi 2-norm of ( ), 0 1pL pµ < <   
 
In this part, we will introduce the quasi 2-norm of the space ( ), 0 1pL pµ < < . For that purpose, we will use 
the following two well known inequalities. 
 
Lemma 1. If (0,1)p∈  and , 0a b≥ , then 

 

( )p p pa b a b+ ≤ + ,                   (2)  

 
and equality holds if and only if 0a =  or 0b = . ■  
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Lemma 2. If 1q >  and , 0c d > , then  
 

12 ( )q q q qc d c d− + ≤ + ,                     (3) 
 
and equality holds if and only if c d= .  
 

Theorem 1. Let ( , )Y M  be a measurable space, µ  be a positive measure on M  and let ( )pX L µ= , 

(0,1)p∈  be the space  
 

{ | : , | | }p

Y

X f f Y f dµ= → < +∞∫R . 

 

Then the function || , ||: ( ) ( )p pL Lµ µ⋅ ⋅ × → R , defined by  
 

1( ) ( )
|| , || { | | ( )}

( ) ( )
pp

Y Y

f x f y
f g d

g x g y
µ µ

×
= ×∫ ,                 (4) 

 

where µ µ×  is the direct product of the measure µ , is the quasi 2-norm of the space ( )pX L µ= .  

 
Proof. a) Because of the inequality (2), we have 

 
( ) ( )

| | | ( ) ( ) ( ) ( ) |
( ) ( )

(| ( ) ( ) | | ( ) ( ) |)

| ( ) ( ) | | ( ) ( ) | ,

p p

p

p p

f x f y
f x g y g x f y

g x g y

f x g y g x f y

f x g y g x f y

= −

≤ +

≤ +

 

 

for all , ( )pf g L µ∈  and for each ( , )x y Y Y∈ × . Now, using (4), the properties of the absolute value and the 

properties of integrating on a direct product of the measurable spaces ( , , )Y Y M M µ µ× × × , we obtain  
 

1

1

1

1

1

( ) ( )
|| , || { | | ( )}

( ) ( )

{ (| ( ) ( ) | | ( ) ( ) | ) ( )}

{ | ( ) | | ( ) | ( ) | ( ) | | ( ) | ( )}

{ | ( ) | | ( ) | | ( ) | | ( ) | }

2 { | ( ) |

p

p

p

p

p

p

Y Y

p p

Y Y

p p p p

Y Y Y Y

p p p p

Y Y Y Y

p

Y

f x f y
f g d

g x g y

f x g y g x f y d

f x g y d g x f y d

f x d g y d g x d f y d

f x d

µ µ

µ µ

µ µ µ µ

µ µ µ µ

µ

×

×

× ×

= ×

≤ + ×

= × + ×

= +

=

∫

∫

∫ ∫

∫ ∫ ∫ ∫

1 1

} { | ( ) | } ,p pp

Y

g y dµ < +∞∫ ∫

 

 

which means that the function || , ||: ( ) ( )p pL Lµ µ⋅ ⋅ × → R  is well defined. 
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b) Let , ( )pf g L µ∈ . From the definition (4) directly follows that || , || 0f g ≥ . Let || , || 0f g = , for 

some , ( )pf g L µ∈ , 0, 0f g≠ ≠  in respect of the measure µ , i.e. 
 

1( ) ( )
{ | | ( )} 0

( ) ( )
pp

Y Y

f x f y
d

g x g y
µ µ

×
× =∫ . 

 
Then 
  

( ) ( )
0

( ) ( )

f x f y

g x g y
=  

 
almost everywhere in respect to the measureµ µ× , which means that ( ) ( ) ( ) ( ) 0f x g y g x f y− =  almost 

everywhere in respect of the measure µ µ× . Therefore,  
 

, {( , ) | ( ) ( ) ( ) ( ) 0}f gW x y f x g y g x f y= − ≠  

 
is a set with measure 0, i.e. ,( )( ) 0f gWµ µ× = . The assumption 0,f ≠  0g ≠  in respect of the measure µ , 

implies that 
 

{ | , ( ) 0}fU x x Y f x= ∈ ≠  and { | , ( ) 0}gU x x Y g x= ∈ ≠  

 
are sets with positive measure i.e. ( ) 0fUµ >  и ( ) 0gUµ > .  

 
We will prove that  
 

( ) 0f gU Uµ ∩ > , ( \ ) 0f gU Uµ =  and ( \ ) 0g fU Uµ = . 

 
Let us suppose that ( ) 0f gU Uµ ∩ = . Then, without loss of generality, we can assume that f gU U∩ = ∅  

in respect of the measure µ . For every ( , ) f gx y U U∈ ×  we have that ( ) 0, ( ) 0, ( ) 0f x g y g x≠ ≠ =  and 

( ) 0f y = , so  
 

( ) ( ) ( ) ( ) ( ) ( ) 0f x g y g x f y f x g y− = ≠ . 
 

Therefore ,( , ) f gx y W∈ , i.e. ,f g f gU U W× ⊆ . Using the properties of the measure µ µ× , i.e. from its 

definition we get that  
 

,( )( ) ( )( )

( ) ( ) 0,

f g f g

f g

W U U

U U

µ µ µ µ
µ µ

× ≥ × ×

= >
 

 

which contradicts ,( )( ) 0f gWµ µ× = . So, we conclude that ( ) 0f gU Uµ ∩ > .  

 

Let us now suppose that ( \ ) 0f gU Uµ > . If ( , ) ( \ ) ( )f g f gx y U U U U∈ × ∩ , then ,fx U∈ ,gx U∉  fy U∈  

and gy U∈ , so ( ) 0, ( ) 0, ( ) 0f x g x f y≠ = ≠  and ( ) 0g y ≠ , which implies that  

 

( ) ( ) ( ) ( ) ( ) ( ) 0f x g y g x f y f x g y− = ≠ . 



 
 
 

Malčeski et al.; BJMCS, 15(2): 1-9, 2016; Article no.BJMCS.22885 
 
 
 

5 
 
 

Therefore ,( \ ) ( )f g f g f gU U U U W× ∩ ⊆ . Using this and the fact that( ) 0f gU Uµ ∩ > , we get that  

 

,( )( ) ( )[( \ ) ( )]

( \ ) ( ) 0,

f g f g f g

f g f g

W U U U U

U U U U

µ µ µ µ
µ µ

× ≥ × × ∩

= ∩ >
 

 
which, again, contradicts ,( )( ) 0f gWµ µ× = . We conclude that ( \ ) 0f gU Uµ = . Analogously, it can be 

proved that ( \ ) 0g fU Uµ = . 

 
The equalities 
 

( \ ) ( )f f g f gU U U U U= ∪ ∩ , ( \ ) ( )g g f f gU U U U U= ∪ ∩ ,  

( \ ) 0f gU Uµ =  and ( \ ) 0g fU Uµ = ,  

 

imply that f gU U U= = , in respect of the measureµ . 

 
Clearly, ( ) 0Uµ > . For each x U∈ , we define the set 
 

{ | , ( ) ( ) ( ) ( ) 0}xU y y U f x g y f y g x= ∈ − ≠ . 
 

We will prove that there exists 0x U∈  such that 
0

( ) 0xUµ = . Let us suppose the contrary, i.e. that 

( ) 0xUµ > , for each x U∈ . 0f g= =  almost everywhere on \Y U  in respect to the measureµ , implies 

that 0f g= =  almost everywhere on \ xY U  in respect to the measureµ , and  
 

| ( ) ( ) ( ) ( ) | 0pf x g y g x f y− >  on xU . 
 
Then  
 

( ) | ( ) ( ) ( ) ( ) |

| ( ) ( ) ( ) ( ) | 0,
x

p
y

Y

p
y

U

h x f x g y g x f y d

f x g y g x f y d

µ

µ

= −

= − >

∫

∫
 

 
which implies that  
 

( ) ( )
| | ( ) ( ) ( ) 0

( ) ( )
p

Y Y Y U

f x f y
d h x d h x d

g x g y
µ µ µ µ

×
× = = >∫ ∫ ∫ , 

 

which contradicts the assumption || , || 0f g = . Therefore, there must exist 0x U∈ such that  
 

0 0( ) ( ) ( ) ( ) 0f x g y g x f y− = , 
 

almost everywhere on .U Since 0 0( ) 0, ( ) 0f x g x≠ ≠  we get that 0

0

( )
( )

( ) ( )
g x
f x

g y f y= , for each y U∈ , which 

together with the fact 0, 0f g≡ ≡  on \Y U , gives that 0

0

( )
( )

( ) ( )
g x
f x

g y f y=  на Y , i.e. ( ) ( )g y f yα= , where 

0

0

( )
( )

g x
f x

α = . So, we proved the condition i) from the definition 1.  
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c) For all , ( )pf g L µ∈ , it follows that  
 

1

1

( ) ( )
|| , || { | | ( )}

( ) ( )

( ) ( )
{ | | ( )} || , ||

( ) ( )

p

p

p

Y Y

p

Y Y

f x f y
f g d

g x g y

g x g y
d g f

f x f y

µ µ

µ µ

×

×

= ×

= × =

∫

∫

 

 
i.e. the condition ii ) from the definition 1 is true.  
 

d) Let , ( )pf g L µ∈  and α ∈ R . Then  
 

1

1

( ) ( )
|| , || { | | ( )}

( ) ( )

( ) ( )
| | { | | ( )} | | || , ||

( ) ( )

p

p

p

Y Y

p

Y Y

f x f y
f g d

g x g y

f x f y
d f g

g x g y

α α
α µ µ

α µ µ α

×

×

= ×

= × = ⋅

∫

∫

 

 
i.e. the condition iii ) from the definition 1 holds. 
  

e) Using the inequality (2), and then the inequality (3), with 1
p

q = , we get that, for all 

, , ( )pf g h L µ∈ , it follows that  
 

1

1

1

( ) ( ) ( ) ( )
|| , || { | | ( )}

( ) ( )

( ) ( ) ( ) ( )
{ (| | | |) ( )}

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
{ (| | | | ) ( )}

( ) ( ) ( ) ( )

( ) ( ) (
{ | | ( ) |

( ) ( )

p

p

p

p

Y Y

p

Y Y

p p

Y Y

p

Y Y

f x g x f y g y
f g h d

h x h y

f x f y g x g y
d

h x h y h x h y

f x f y g x g y
d

h x h y h x h y

f x f y g x
d

h x h y

µ µ

µ µ

µ µ

µ µ

×

×

×

×

+ +
+ = ×

≤ + ×

≤ + ×

= × +

∫

∫

∫

∫
1

1 1 1

1

1

1

) ( )
| ( )}

( ) ( )

( ) ( ) ( ) ( )
2 {( | | ( )) ( | | ( )) }

( ) ( ) ( ) ( )

2 (|| , || || , ||),

p

p p p

p

p

Y Y

p p

Y Y Y Y

g y
d

h x h y

f x f y g x g y
d d

h x h y h x h y

f h g h

µ µ

µ µ µ µ

×

−

× ×
−

×

≤ × + ×

= +

∫

∫ ∫

 

 

which means that, for 
1 1

2 1pK
−

= > , the condition iv) from the definition 1 holds.  
 
In [1], C. Park defines Cauchy sequence, convergent sequence and complete quasi 2-normed space i.e. he 
gives the following definition.  
 
Definition 3. Let L  be a quasi 2-normed space.  
 

a) The sequence 1{ }n nx ∞
=  in L  is a Cauchy if  

 

       lim || , || 0m n
n

x x z
→∞

− = , for each z L∈ . 
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b) The sequence 1{ }n nx ∞
=  in L  is convergent if there exists x L∈  such that  

 

        lim || , || 0m
n

x x z
→∞

− = , for each z L∈ . 

 

The vector x L∈  is called the boundary of the sequence 1{ }n nx ∞
= .  

 
c)  A quasi 2-normed space L  in which every Cauchy sequence is convergent is called a quasi                  

2-complete (a quasi 2-Banach) space.  
 

Problem. Whether the quasi 2-normed space ( )pL µ , 0 1p< <  with the quasi norm, introduced by (4), is 

complete?  
 

3 Two Inequalities in ( ), 0 1pL pµ < <  as Quasi 2-normed Space 
 
For the quasi 2-normed spaces in [4], it is proven the following Lemma.  
 
Lemma 3. If L  is quasi 2-normed space with modul of concavity 1K ≥ , then, for each 1n >  and for all 

1 2, , ,..., nz x x x L∈ , it follows that  

 

21 [log ( 1)]

1 1
|| , || || , ||

n n
n

i i
i i

x z K x z+ −

= =
≤∑ ∑ . ■                                                         (5)  

 
From Lemma 3 and the proof of Theorem 1, directly follows the consequence.  
 

Corollary 1. Let ( ), 0 1pL pµ < <  be a quasi 2-normed space in which the quasi 2-norm is given by (4). 

Then for all 1 2, ,..., , ( )p
nf f f g L µ∈ , 2n ≥ , it follows that  

 
1

2(1 [log ( 1)])( 1)

1 1
|| , || 2 || , ||p

n nn
i i

i i
f g f g

+ − −

= =
≤∑ ∑ .                                                          (6)  

 

Proof. It is enough to take 
1 1

2 1pK
−

= >  in the inequality (5). ■ 
 
In the following theorem, we will prove stricter inequality then the inequality (6). For that purpose, we will 
use the following well known inequality. 
 
Lemma 4. Let [1, )t ∈ ∞ . Then for all 1 2, ,..., [0, )na a a ∈ ∞ , it follows that  
 

1

1 1
( )

n n
t t t

i i
i i

a n a−

= =
≤∑ ∑ . ■ 

 

Theorem 2. Let ( ), 0 1pL pµ < <  be a quasi 2-normed space in which the quasi 2-norm is given by (4). 

Then for all 1 2, ,..., , ( )p
nf f f g L µ∈ , it follows that  

 
1 1

1 1
|| , || || , ||p

n n

i i
i i

f g n f g
−

= =
≤∑ ∑ .                                                          (7) 
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Proof. Since 1 1
p

t = > , the inequality (4), the properties of the integral, Lemma 1 and Lemma 4 imply that  

 
1

1

1

1

1

1 1

1

1

1

1

( ) ( )
|| , || { | | ( )}

( ) ( )

( ) ( )
{ ( | |) ( )}

( ) ( )

( ) ( )
{ | | ( )}

( ) ( )

( ) ( )
{ | | ( )}

( ) ( )

( ) ( )
{ |

(

p

p

p

p

p

n n
i i p

i
i iY Y

n
i i p

iY Y

n
i i p

iY Y

n
i i p

i Y Y

i i

f x f y
f g d

g x g y

f x f y
d

g x g y

f x f y
d

g x g y

f x f y
d

g x g y

f x f y
n

g x

µ µ

µ µ

µ µ

µ µ

= =×

=×

=×

= ×

−

= ×

≤ ×

≤ ×

= ×

≤

∑ ∑∫

∑∫

∑∫

∑ ∫

1

1

1

1

1

| ( )}
) ( )

|| , ||.

p

p

n
p

i Y Y

n

i
i

d
g y

n f g

µ µ
= ×

−

=

×

=

∑ ∫

∑

 

 

Clearly, the inequality (7) is stricter than the inequality (6), since for each 2n ≥ , it holds 21 [log ( 1)]2 nn + −≤ , 

and the equality holds for 2 , 1,2,3,...kn k= = .  

 

To prove that 
1 1
pn

−
 is the best possible constant, it is enough to take that E  and F  are measurable sets such 

that ( ) , ( )E Fµ α µ β= < ∞ = < ∞ , 1Fg = and iE E=  and 1
ii Ef = , for 1,2,...,i n= . Then  

 

 

1 1 1

1 1 1 1

1 1 1

1 1

1

|| , || { ( )( )} { ( ) ( )} ( )

{ ( ) } { ( ) ( )}

p p p

p p p p

n n n

i i i
i i i

n

i
i

f g E F E F n

n n n E F

µ µ µ µ αβ

αβ µ µ

= = =

− −

=

= × × = =

= =

∑ ∑ ∑

∑

 

1 1 11 1

1 1
( )( ) || , ||.p p p

n n

i i
i i

n E F n f gµ µ
− −

= =
= × × =∑ ∑  ■ 

 

4 Conclusion 
 
In this paper, it’s introduced the quasi 2-norm of the space ( ),pL µ  0 1p< <  and there are proven several 
inequalities relating the quasi 2-norm of this space. Also is given the following open problem:  
 

Whether the quasi 2-normed space ( )pL µ , 0 1p< <  with the quasi norm, introduced by (4), is 
complete?  
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