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Abstract

In this paper, a fractional sub-equation method is propfisefihding exact solutions of the space-time
fractional Burger's equation and the space-time fractiorf#h-drder Sawda-Kotera equation. The
derivative is defined in the Jumarie’s modified Riemanoulille senseThe proposed method is based
on fractional Riccati’s equation. Accordingly, it was obgairthree different exact solutions, namely the
generalized hyperbolic function solutions, generalized miegeetric function solutions and rational
solutions. The proposed scheme can also be applied to mbhénear fractional partial differential
equations.

Keywords: Fractional differential equation; fractional selgquation method; modified Riemann-Liouville
derivative; Burger's equation; Sawda-Kotera equation; Mijtteeffler function; analytical
solutions.

*Corresponding author: E-mail: waleedmalhamdan@dmcam;



Alhamdan et al.; BIMCS, 15(2): 1-11, 2016; ArtioteBJMCS.23784

1 Introduction

It is known that fractional differential equations arengralizations of classical differential equations of
integer order. Nonlinear fractions partial differential egpret (NFPDES) are used to describe many
phenomena in several areas such physics, engineering, bidtdgdy. [

Existence, uniqueness and stability of solutions dPNEs have been investigated by many authors (see for
example [12-16]).

In the last decade, many analytical and numerical methagds been proposed to obtain solutions of
NFPDEs, such as fractional functional variable method, [1&gendre spectral-collocation method [18-20],
finite difference method [21-23], finite element method [24-26fferential transform method [27-29],
homotopy analysis method [30,31] and so on [32-36].

Finally, the Simplified bilinear method and the (G'/G) exgian method are used to obtain exact solutions
of some important fractional nonlinear equations arise in psy3i7-39].

In 2011, Zhang et al. [40] proposed an important new methitatldaactional sub-equation method to find
for traveling wave solutions of NFPDEs. This new methooedds on the homogeneous balance principle
and Jumarie’s modified Riemann-Liouville derivative [41} Bsing the fractional sub-equation method,
Alzaidy J. [42] solved two nonlinear space-time FPDEs.nghet al.’s work was improved by Guo et al.
[43] and Lu [44] to obtain exact solutions of some nowlirgpace-time FPDEs.

In this paper, we will apply the fractional sub-equatiorthmé for solving fractional partial differential
equations in the sense of modified Riemann-Liouville dexgaby Jumarie [41]. To demonstrate the
validity and advantages of the method, we will apply it togbace—time fractional Burger’'s equation and
the space-time fractional fifth-order Sawda-Kotera equation

This proposed method to our knowledge has not been applted space—time fractional Burger's equation
and the space-time fractional fifth-order Sawda-Kotera témua

The article is organized as follows: In Section 2, wi deéscribe the Jumarie’s modified Riemann-Liouville
derivative with some of its important properties and giheemain steps of the method here. In Section 3, we
will give two applications of the proposed method to NFPMusally in Section 4, some conclusions are
given.

2 Description of Modified Riemann-Liouville Derivative and the
ProposedMethod

The Jumarie’s modified Riemann-Liouville derivative ofler & is defined by the expression [41]

ﬁ [} =& -1 )¢, a<o,
DIf () == r(1 27 o S x-o(@-1O)dE,  0<a<i @
[f (”'“)(x)](n) n<a<n+l nx1.
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Here we summarize some properties for the proposed modifeadaRin—Liouville derivative are listed in
[41] as follows:

Daxy: r(y+l) Xy—a
X Fry+1-a)

DIE ()90 =9 B f(+ (¥ O d 3, @3)
Df [g()]=f,[9(x)] Df o) = Of f[ o B[ &« H, @

which will be used in the following sections.

. ¥>0, )

We show the main steps of the fractional sub-equationadeth follows.

Step 1.Assume that we have the following NFPDE in the form:

Fuu,u,Dfu X u.)=0 ©&a<l (5)

where Dfu and Dt"u are defined in (1)F is a polynomial inl and its various partial derivatives, in
which the highest order derivatives and nonlinear terms are irdolve

Step 2.Using the following wave transformation:
u(x,t)=u(é), ¢&=kx+ct (6)

where K andC are constants to be determined later, the NFPDE (S)lised to the following nonlinear
fractional ordinary differential equation (NFODE) fdr=Uu(¢) :

Fuku,ed, K uc€ @ uy.)=0 @)

Step 3.Suppose that Eq. (7) has the formal solution:
n .
u@)=>ag', (8)
i=0

where g, (i =0,1,2,...n ) are constants to be determined laterjs a positive integer determined by
balancing the highest order derivatives and nonlinear termsyin(3jor Eq. (7) (see [45] for details),
Whereas¢ = ¢(f) satisfies the following fractional Riccati's equation:

DERE) =5+ 02§, (©)

wheregs is a real constant. By using the generalized Exp-functiethod via Mittag-Leffler functions [46],
Zhang et al. presented the following solutions of fractidtiatati’s equation (9)



Alhamdan et al.; BIMCS, 15(2): 1-11, 2016; ArtioleBIMCS.23784

—\/;tanhg (\/;{), o<0
—J-ocoth, /-0 &), 0o<0

#(&) = \/Etana(x/gf), o>0 (10)
—Jo cot, o &), o> 0,
_Ml+a)

, w=const.,, =0

$T+w
where the generalized hyperbolic and trigonometric functioaeglefined as

BN Eg(—£9)  EQ(ED)+E(~E)
tanhe () = o rrae cotha(§) = o) paien’ 11

E, (i) - Ea(—i§“)> cot, (8) = i<Ea(i§") + Ea(—if")).

tan,(§) = _i< E,(§%) + E, (&%) Eq(§*) — Eq(—§%)

where E ,(z) denotes the Mittag-Leffler function, given by

k

hd Z
E = _ . 12
. (2) ;)I'(Hka) (12)

where Gamma function is defined for Re(z) > 0 by

() :J A dr (13)
0

Step 4. Substituting Eq. (8) in conjunction with Eq. (8)to Eqg. (7) and using Egs. (2-4), we can obtain
polynomial in @(¢) . Status all the coefficients @™ (m=0,1,2,...)to zero, yields a set of nonlinear
algebraic equations fa, (i =0,1,2,...n )k andC.

Step 5.Finally, Solving algebraic equations in step 4 fgr(i =0,1,2,...n )k and C by using the

Maple or Mathematica, substituting these constantstanddlutions of Eq.(9) into Eq.(8), we can obtain the
explicit solutions of Eq.(5) immediately.

Remark: When a =1 , the fractional Riccati sub-equation becomes classicacai equation
@'(§) = o+ @*(&) used in [47]). So the method in this paper can be appliesolie integer-order
differential equations. We conclude that our method is a gkfeerthe tanh-function method.

3 Applications

In this section, we will applyhe fractional sub-equation method to construct exact solsition some
nonlinear fractional partial differential equations (NFPDE®mely the space—time fractional Burger's
equation and the space—time fractional fifth-order Saatara equation which are very important NFPDEs
in mathematical physics and have been paid attention by msegrchers.
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3.1 Example 1. The space—time fractional Burger'sguiation
We consider the space—time fractional Burger’s equation.
Dfu+ADPu—Buy, +euu,=0.0<a<1,0<p<1 (14)

whereA, Bande are constants. This equation describes the physicalgsesef unidirectional propagation
of weakly nonlinear acoustic waves through a gas-filled pie fractional derivative results from the
memory effect of the wall friction through the boundaaydr [48]. Now, using the traveling wave
transformation (6), Eq. (14) can be reduced to the folgNFODE:
c“D?u-f-AkﬁDfu—Bk2D§u+ekuD5u=O. (15)

By balancing the highest order derivative terms and neatiterms in Eq. (15), gives the valuenct 1.
Thus, we have

u(é) =g +ag(s), (16)

where@(£) satisfies the Riccati equations

Dip = o, + ¢?,
Dfp =0, + @2 (17)
DEQ” =03+ (,02.

Substituting Eq. (16) along with Egs. (17) into Eq. (15) tmh setting the coefficients @i (i = 0,1,2,3)
to zero, we can obtain a set ofalgebraic equations,far;, o; as follows:

©%:c% 0, +AkPaj oy +ekagas 63=0

@licka 203—2 Bk2a,103=0 (18)
@2:c®a +AkBa,+ekaga; =0

@3:—2 Bk?aq+eka,? =0

Solving the algebraic equations(18) by Mathematica, we have:

c+a kb _ 2Bk _AKP
T ek G == 1= "

ay = (03— 03) + 3. (19)

From Egs. (10), (16) and (19), we get three different tgbesact solutions of Eq. (14) as follows:

Two generalized hyperbolic function solutions

B
Ifo =ACL0,(03 —0a,)+0; <0 ,then

[ corakP 2Bk [akB AkB
o~ Ao (F03 T 03) —oztanh, | | (=03 + 02) — 03¢ ),

u@=4 ~ B
c*+Ak 2Bk |Ak Ak
i TJCT (=03 + 0;) — o3C0th, (Jc—a (=03 +0,) - 035) :

(20)




Alhamdan et al.; BIMCS, 15(2): 1-11, 2016; ArtioteBJMCS.23784

Two generalized trigonometric function solutions

]
Ifo, = %(03 —0,) + 03 > 0, then

_c"‘+Akﬁ_|_ZBkJAkIg

AkB
(03 — 03) + o3 tan, <\/c_a(03 —0) + 03 E>,

( ) K 3 c® ( )
u(é) = 21

c*+AkP 2Bk |AkB AKB

l_T_ - e (03 — 0,) + g3c0t, C_a(as_az)"'asf .
One rational solution
AKP
Ifo, = c_“(03 —0,) +0;=0,then
a B
u(E) __¢ +Ak _ 2 BkI'(1+a) (22)

€K £(§%+w)
Asa - 1 andp — 1the results obtained above become the ones of Eq. (14).
3.2 Example 2. Space-time fractional-fifth-order Sevda-Kotera equation
Next, we consider the following space-time fractionahfiorder Sawda-Kotera equation discussed in [49]:
D&u + D2%u + 45 u?D%u + 15 D¥uD2%*u + 15 uD3%u = 0, 0<ac<l. (23)
Using the traveling wave transformation (6), Eq. (23) lsa reduced to the following NFODE:
c®Dfu + K>*D2%u + 45K *u?D%u + 15 K3*DZuD2%u + 15 K3*uD3%u = 0, (24)

Subsequently, we assume that (24) admits a solution in the form

u(£)=ia¢‘, (25)

At this stage we apply the same technique as indke of the previous example, namely, by balancing the
highest order derivative terms and nonlinear terms in (Bdh substituting (25) with = 2, with (9) into
(24), we finally obtain the corresponding system of algiebequations as

9230 k3% a,0+16 k5%a,03+45 k%ag2a,0+30 k3%aga 062 +c%a 0=0,
01:60 k3%a,203+272 k5%a,03+90 k¥a3a,o+90 k%ag a?o+240 k3%ag a; o2
+60 k3%a,202+2 c%ay0=0,
©2:136 k5%aq02+45 k%aZa; +180 k%ag ay apo+45 k*(2a; az+a;2)a, 0 (26)

+2 c%aq+ 480 k3%aq ay 02+120 k3%a, a, 0=0,
93:540 k3%a252+180 k3%a?g+2c¢%a, +600 k3%aya,o+1232 k°%a, o2
+90 k%a3a, +90 k%ag a2+90 k%(2ag az+ai2)a;o+90 k%¥a2a, o =0,
¢*:1050 k3%a,a,0+90 k3%ag a, +240 k5%, 0+180 k%ag a, ay
+45 k%(2ag az+a,2)aq + 225 k%a,y a;20=0,
©3:1680 k5%a;0+90 k%(2ag az+a12)a, +90 k¥a?a; +90 k%a301020 k3%a3a
+120 k3%a?+360 k3%aga,=0,
9%:225 k%a a2 +600 k3%a, a; +120 k5%ay =0,
979 k%a3+540 k3%aZ+720 k5%a; =0.

Solving the set of algebraic equations (26)dgra,, a, and o by Maple or Mathematica yields
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Table 1. The results

Case ay

1 — L 20k + 5k~ \aksq? — coke)

a;, a, o
0 —2k%« o

2 1 0 _o2a
T2 (-20k0 + Y5k~ /4ksao? — k) 2k ’

3 _Eica/zk—a/z 0 —4k*® lica/zk—Sa/Z
4 ;ica/zk—a/z 0 4k _%ica/zk—Sa/Z
5 _Eica/zk—a/z 0 —2k* ic%/2k-5a/2
3
6 Eica/Zk—a/Z 0 _2k2a _ica/zk—Sa/Z
7 16ic%/2k=*/2 0 —2k%
- N li ica/zk—Sa/Z
8 16ic%/2k~/2 0 —2k* <
W —li 2 cal2p-sal2
2 .31
9 _Eca/zk—a/z 0 —2k?¢ lca/zk—Sa/Z
3
10 0 _2k2a

2
_Ca/Zk—a/Z
3

_lca/zk—Sa/z

Based on the sign of there are at most 42 distinct non-trivial solutionsvidedk # 0 # ¢ Finally,
Egs. (10), (25) witm = 2 and Table 1 we obtain the following generalized hyperbaiiction solutions,

generalized trigonometric function solutions and rational swiwf Eq. (23). For example in case 1:

u(§) =

11—5(20k2“a + V5k~4k6%02 — c®k@) + 2k2*g tanh(vV=0¢),
—% (20k2%g + V5Sk™*V4k6%0% — c®k ) + 2k coth2(V—=a¥),
——(20k?*g + Bk ~*VAk®TZ — cTk®) — 2k**o tan (Va?),
——(20k2%0 + V5k~“V4kT0? — cTk®) — 2k**g cotZ(Va¥),
— L (VBkay=cake) - 2k [LL]

%

whereé = kx + ct.

And the remaining solutions will be in the same manner.

4 Conclusion

<0,
o<,
g>0,

o>0,

o=0,

from

(27)

In this article, based on the fractional sub-equation methedhave successfully found out five exact
analytical solutions for the space—time fractional Busgequation and at most 42 exact analytical solutions
for the space-time fractional fifth-order Sawda-Kotdraese solutions including the generalized hyperbolic

function solutions, generalized trigonometric function soliand rational solutions.

From our results obtained in this paper, we conclude tleafréittional sub-equation method is powerful,
effective and convenient for solving NFPDESs. Also, thieitsons of the proposed NFPDEs in this paper may
have many potential applications in physics and engimger
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Finally, we believe that this method provides a powerfuthematical tool to obtain exact analytical
solutions of a great many NFPDESs in mathematicaliphys
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