
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: fahihyder@gmail.com; 
 
 

Journal of Advances in Medical and Pharmaceutical 
Sciences 

10(1): 1-9, 2016, Article no.JAMPS.24441 
ISSN: 2394-1111 

 
SCIENCEDOMAIN international 

                                     www.sciencedomain.org 

 

 

Molecular Insights into the Role of Inflammation and 
Oxidative Stress in Epilepsy 

 
Shah Nigar1, Faheem Hyder Pottoo2*, Nahida Tabassum2,  

Santosh Kumar Verma1 and Md. Noushad Javed3 
 

1Department of Pharmacology, CT Institute of Pharmaceutical Sciences, Jalandhar-144020, Punjab, 
India. 

2Department of Pharmaceutical Sciences, Division of Pharmacology, Faculty of Applied Sciences and 
Technology, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India. 

3Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar- 110062, 
New-Delhi, India. 

 
Authors’ contributions 

 
This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 
 

Article Information 
 

DOI: 10.9734/JAMPS/2016/24441 
Editor(s): 

(1) Xiao-Xin Yan, Department of Anatomy & Neurobiology, Central South University Xiangya School of Medicine (CSU-XYSM), 
Changsha, Hunan 410013, China. 

Reviewers: 
(1) Eduardo Fernandes Bondan, Universidade Paulista, Rua Caconde, Brazil. 

(2) Giovanni Pagano, Federico II Naples University, Naples, Italy. 
(3) Mihai Radu, University of Verona, Italy. 

(4) Fabiana Geraci, University of Palermo, Italy. 
(5) Matthew Loftspring, Washington University, St. Louis, MO, USA. 

Complete Peer review History: http://www.sciencedomain.org/review-history/16172 
 
 
 

Received 20 th January 2016  
Accepted 4 th September 2016 

Published 12 th September 2016  
 

 
ABSTRACT 
 
Epilepsy is a chronic neurological disorder manifested as unpredictable, unprovoked recurrent 
seizures that affect a variety of mental and physical functions. Despite the use of current anti-
epileptic drugs (AEDs) about 30% of patients remain refractory, while 30-40% have associated 
psychiatric disturbances. A gap in successful AED search has been the lack of understanding of the 
processes leading to the cascade of epilepsy. Thus we tried to focus on the role of inflammation and 
oxidative stress in epilepsy. Epileptic seizures result in extensive release of proinflammatory factors 
i.e cytokines, chemokines from glial cells, thereby increasing the influx of neuronal calcium, 
enhancing extra neuronal glutamate concentration and decreasing potassium, resulting in decrease 
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in seizure threshold and neurodegeneration. Prolonged seizures produce sufficient cellular reactive 
oxygen species (ROS) and reactive nitrogen species (RNS) which initiate a cascade of events 
induced by increased firing from neurons, excessive release of glutamate, activation of N-methyl-D-
aspartate (NMDA) receptor, influx of cytosolic and mitochondrial calcium, increased ATP 
consumption and mitochondrial damage, resulting in neuronal hyperexcitation and 
neurodegeneration. 
 

 
Keywords: Inflammation; oxidative stress; toll like receptors; blood brain barrier; epilepsy.  
 
1. INTRODUCTION  
 
Epilepsy is a chronic neurological disorder 
characterized by recurrent seizures and is often 
accompanied by psychiatric disturbances [1]. 
The excessive or synchronous neural activity in 
the brain leads to epileptic seizures [2]. Epilepsy 
represents a socioeconomic burden and usually 
patients suffering from epilepsy also suffer from 
social stigma. It affects almost 70 million people 
of world [3] including 10 million in India. The 
incidence of epilepsy for low-income and middle-
income countries is estimated at 81.7/ 
100,000/year, while for high-income countries it 
is estimated 45.0/100,000/year [4]. Similarly the 
prevalence of epilepsy for low and middle-
income countries is about twice that of high-
income countries [3]. The median life time 
epilepsy prevalence for low income and middle 
income countries is 15.4 per 1,000 for rural and 
10.3 per 1,000 for urban areas while for high 
income countries it is 5.8 per 1,000. Similarly, the 
median active epilepsy for low-and middle-
income countries is 12.7 per 1,000 in rural and 
5.9 per 1,000 in urban areas and for high-income 
countries 4.9 per 1,000 [3]. Insult from seizures 
or excitotoxic brain damage induce, activate and 
persist regional as well as cellular patterns of 
inflammatory response to stimulate Toll like 
receptors (TLRs) which on activation stimulate 
various genes encoding proinflammatory factors 
such as cytokines, chemokines, complement 
system, cyclooxygenase-2 (COX-2), nitric oxide 
via many transcriptional factors or nuclear factors 
such as nuclear factor κB (NFκB) resulting in 
severe inflammation. The inflammatory 
responses induce oxidative and nitrosative stress 
pathways, while subsequent mitochondrial 
metabolic processes generate highly reactive 
free radical molecules. High levels of        
intracellular calcium ions also induce ROS 
production in a biosystem culminating in 
oxidative stress (OS) [5]. In this review we will 
discuss evidence for the role of inflammation and 
oxidative stress in epileptogenesis. A better 
understanding of these pathways may inform 
future treatment options. 

2. INFLAMMATION IN EPILEPSY  
 
Pathological conditions of brain inflammation are 
distinguished from normal physiological 
conditions because parenchymal cells (microglia, 
astrocytes, and neurons), blood brain barrier 
(BBB) and choroid plexus mediate production of 
detectable quantity of many inflammatory 
mediators which are usually produced in our 
body by the immune system either under 
pathological threats or in response to infection. A 
rapid and robust animal model for brain 
inflammation in rodents involves administering 
systemic infection mimicking lipopolysaccharide 
(LPS); the main structural component of external 
membrane of gram-negative bacteria and 
molecular patterns of invading pathogenic 
microbes, which are mainly recognized as sites 
for specific receptors: Toll like receptors (TLRs) 
and immune system cells.  
 
These specific receptors (TLRs) get activated in 
presence of exogenous molecules and stimulate 
various genes encoding proinflammatory factors 
such as cytokines, chemokines, complement 
system, COX-2and nitric oxide via many 
transcriptional factors or nuclear factors such as 
nuclear factor κB (NFκB) [6]. Apart from 
infectious agents, inflammatory responses in 
brain are also well predicted against various 
endogenous ligands and signals usually sourced 
from a large spectrum of injuries i.e. trauma, 
ischemia during seizures, excitotoxic brain 
damage, damaged BBB or heat shock proteins of 
damaged extracellular matrix. Thus, if these 
ligands enter the brain, depending upon injury 
level they induce inflammatory response to 
stimulate TLRs, hence triggering many immune 
responses at various time functions [7]. 
 
2.1 Role of Blood Brain Barrier  
 
Blood brain barrier (BBB) is made up of non 
fenestrated endothelial cells with tight junctions 
made up of interendothelial cells. The 
maintenance and functioning of BBB is regulated 
by various type of cells like pericytes, 
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perivascular microglia and astrocytes which are 
annexed to the capillary and post-capillary 
venules region in the central nervous system 
(CNS). BBB provides protection to CNS under 
normal physiologic conditions by strictly 
regulating the entry of plasma-born substances 
and immune cells into the nervous tissue. 
Transient changes in physiologic as well as 
structural characteristics of the BBB occur during 
events like seizures, traumatic and ischemic 
CNS injuries or pathogenic infections to the 
brain.  
 
Brain regions characterized by a “leaky” BBB 
have been consistently reported in epileptic brain 
[8]. Seizures lead to the activation of IL-1β 
system and breakdown of the BBB [9]. This 
breakdown leads to the leakage of BBB and the 
entry of albumin into the brain. Albumin entry 
induces a further upregulation in inflammatory 
mediators and reduces potassium and glutamate 
uptake of astrocytes, culminating in elevated 
neural excitability [10]. Besides inflammatory 
reactions the invasions of leucocytes is also 
initiated due to BBB leakage [11]. Hence a 
breakdown of BBB has a net neuronal excitability 
effect.  
 
In a seizure-related immune response, neurons 
are not the only brain cells to display an 
inflammatory phenotype in epileptic brain, since 
other brain cells also contribute to seizure related 
immune responses [12]. The chemokines and 
their receptors (CXCL12 and CXCR4; CCL2 and 
CCR2) are up-regulated in glia during seizures 
[13]. Adhesion molecules (P- and E-selectin) are 
also up-regulated in response to electrographic 
seizures at the luminal side of the endothelium 
forming the BBB [14]. 
 
Epileptic seizures also provoke such 
inflammatory responses which enhance calcium 
influx into neurons and activate glial cells. Glial 
cells increase extracellular potassium and 
glutamate and induce further inflammatory 
response which leads to a decrease in seizure 
threshold and neuronal hyperexcitability. Thus, 
epileptic seizures and inflammatory mediators 
form a positive feedback loop, reinforcing each 
other.  
  
Thus two distinct inflammatory processes have 
been linked to seizures. 
 
a) Neuroinflammation which is present in 

epileptic brain - where it exacerbates 
seizures or increases their frequency [15].  

b) Systemic inflammation which causes 
epileptiform neuronal discharge via loss of 
ionic e.g. potassium and neurotransmitter 
e.g. glutamate homeostasis [16,10]. The 
neuroinflammation directly affects 
neurovascular and glial function. Systemic 
inflammation are mediated or facilitated by 
loss of BBB function [17]. 

 
2.2 Molecular Cascades  
 
There are various pathways identified in 
hippocampus during the epileptic process. These 
include:  
 
i. Disruption of BBB 
ii. COX-2 signaling pathway and related 

prostaglandins 
iii. Classical cytokines and their downstream 

targets 
iv. TLRs.  
 
During seizures, microglia and astrocytes are the 
first cells producing cytokines. These soluble 
proinflammatory cytokines function to 
communicate between microglia, astrocytes and 
the neurons [18]. The two inflammatory cytokines 
i.e. interleukin (IL)-1β and tumor necrosis factor 
(TNF)-α have their molecular as well as cellular 
actions on neuronal excitability and epilepsy. 
These molecules are released within the brain at 
specific circumstances. They modify both short-
term and long-term neural excitability. The 
manipulation of IL-1β and/or TNF-α levels or their 
downstream pathways influences neuronal 
excitability, seizure susceptibility and 
epileptogenesis. IL-1β has a potential seizure 
facilitatory role in models of febrile seizures (FS), 
febrile status epilepticus (SE) [19] and 
pilocarpine-induced SE in immature rats [20]. 
Further enhanced endogenous IL-1β level 
reinforces its proconvulsant effects. Contrary to 
this, intracerebral application of natural 
antagonist of IL-1 receptor (IL-1ra) has been 
found to be powerful anticonvulsant agent, which 
simultaneously antagonizes the effect of 
endogenous IL-1β [21]. The mice exhibiting 
overexpression of IL-1ra shows significant 
reduction in susceptibility to seizures [22]. 
 
IL-1β binding to its receptor increases NMDA 
receptor-mediated Ca2+ influx and surface 
expression of AMPA receptors [23]. It inhibits 
glutamate reuptake by astrocytes [24] resulting in 
elevated extracellular glutamate levels and 
hyper-excitability. In hippocampal neurons 
reduction in magnitude of currents mediated by 
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γ-amino butyric acid (GABA) is counteracted by 
IL-1β [25].Thus one may envisage that functional 
interactions exist at the molecular level between 
IL-1β receptors and N-methyl-D-aspartate 
receptors (NMDA) which are co-expressed by 
hippocampal neurons [26]. The overexpression 
of IL-6 in glia cells increases seizure sensitivity 
towards glutaminergic agonists, although no 
such correlation is found with cholinergic 
agonists [27]. The overexpression of IL6 causes 
loss of GABA-and parvalbumin-positive neurons 
in the hippocampus of mice. 
 
TNF-α is another inflammatory factor implicated 
in epilepsy, infact its expression is up-regulated 
in seizures [28]. Microglia in the brain mainly 
releases TNF-α [29] and stimulates astrocytes to 
release glutamate [30]. Glutaminergic neurons 
are stimulated because of extracellular increase 
in glutamate concentration thereby depolarizing 
their membrane potential. Thus post- seizure 
production of inflammatory mediators triggers 
neuronal hyperexcitability through modulations of 
ion channels via glutamate release in neurons 
and glia respectively. After ischemic, traumatic 
and excitotoxic damage in healthy brain tissue 
there is rapid induction in the level of 
proinflammatory cytokines such as TNF-α and 
interleukins which are initially expressing at very 
low level in normal brain [7]. Expression of 
messenger RNA (mRNA) and levels of 
proinflammatory cytokine proteins are enhanced 
with an exception for IL-1β which is upregulated 
in brain of rats developing spontaneous seizures 
even 60 days after the induction of status 
epilepticus. The status epilepticus or continuous 
seizures over 30 minutes can cause neuronal 
death [31] through glutamate-mediated 
excitotoxicity, necrosis and activation of 
apoptosis [32]. One to three days after status 
epilepticus, both neuronal and astrocytic death is 
observed in the dentate hilus region of 
hippocampus [33]. Injured neurons and glia and 
their fragmented DNA are rapidly cleared by 
activated microglia [34]. 
 
In addition to inflammatory cytokines, another 
major factor having a specific role in epilepsy are 
prostaglandins (PGs). Prostaglandins are major 
factors that stimulate inflammatory processes; 
they are markedly increased following seizures 
and contribute to epileptogenesis and reduction 
in seizure threshold [35]. With the robust 
production of PGs in the brain following seizures, 
an inducible type of COX, i.e COX-2 but not the 
constitutively expressed COX-1 is rapidly 
induced in the brain [36]. In hippocampal region, 

seizures induce COX-2 partly through the 
pathway of NMDA receptors [37,36,38]. When 
COX-2 is ablated from the principal forebrain 
neurons (e.g. hippocampal pyramidal and 
dentate granule neurons) there is no effect on 
seizure onset or intensity in the pilocarpine 
model, whereas selective ablation of COX-2 
which is limited to principal forebrain neurons 
was neuroprotective in the hippocampus [39]. 
 
3. OXIDATIVE STRESS IN EPILEPSY  
 
Oxidative stress (OS) and nitrosative stress (NS) 
are defined as imbalances between generation 
and elimination of reactive oxygen species 
(ROS) and reactive nitrogen species (RNS). 
Under normal physiological conditions ROS 
and/or RNS levels are fairly well regulated to 
perform important functions such as autophagy, 
chemical signaling, cell division, mitogen 
activated protein kinase signaling and apoptosis 
[40]. The ROS and RNS are highly reactive in 
nature, the imbalance of which is frequently 
associated with neurodegeneration and 
mitochondrial dysfunction seen with 
epileptogenesis [41]. In OS/NS there are 
alterations in ROS, RNS and nitric oxide (NO) 
signaling pathways, whereby bioavailable NO is 
decreased and ROS and RNS production is 
increased [42]. The inflammatory responses 
induce the OS and NS pathways, and 
subsequent mitochondrial metabolic processes 
generate highly reactive free radical molecules. 
ROS and RNS are generated during the 
irradiation of ultraviolet (UV), X-rays and gamma 
rays; they are produced by neutrophils and 
macrophages during inflammation; they include 
products of reactions catalyzed by metals 
present in air pollutants, and products of 
reactions catalyzed by the electron carriers in the 
mitochondria [43]. OS during SE induced by 4-
aminopyridine, LiCl-pilocarpine or kainic acid has 
also been reported in immature rat brain, 
completely invalidating some views that SE-
related OS is age-dependent [44]. 
 
Brain contains large number of easily oxidized 
fatty acids (20: 4 and 20: 6) and a limited 
antioxidant system and is thus highly sensitive to 
oxidative damage [45]. Oxidative stress is 
strongly implicated during seizures induced by 
excitotoxicity due to mitochondrial ROS 
generation [46,47]. During pilocarpine-induced 
SE, hyperactivity or excitotoxicity of neurons 
induce an increase in concentrations of free 
radicals [48]. The increased activity of 
glutaminergic systems induces status epilepticus 
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and there is a decrease in ATP levels due to 
change in redox potential, which leads to 
collapse in brain energy production and supply 
[49]. 
 
Seizures lead to an increase in glutamate 
release and activation of NMDA receptor with 
decrease in extracellular Ca2+ concentration and 
increase in cytosolic Ca2+ concentration [50]. The 
effects mediated by Ca2+ during excessive 
glutamate receptor activation (excitotoxicity) lead 
to neuronal degeneration and overload of 
mitochondria with Ca2+, so free radicals are 
generated. Overload of this type of Ca2+ leads to 
OS, cellular damage, and eventually cell death 
because of Ca2+ mediated opening of 
mitochondrial permeability transition (MPT) pores 
associated with apoptosis [51]. 
 
The phospholipase A2-dependent activity of Ca2+ 

mediated by glutaminergic receptors liberates 
arachidonic acid (AA), which generates 
superoxide (O2−) through its metabolism by 
lipoxygenases and cyclooxygenase for 
eicosanoid formation [52]. The constant 
formation of NO· by the glia is neurotoxic 
because it increases the neuronal sensitivity to 
this reactive species. The neurotoxic action of 
NO· is likely caused by the formation of  
Peroxynitrite (ONOO−) which is rapidly formed by 
the reaction of NO· with O2 

·−. Xanthine oxidase 
generates O2 

·− when there is elevated 
intracellular Ca2+ concentration and energy 
deficiency.  
 
3.1 Mitochondrial Dysfunction  
 
Because of abundant mitochondria in neurons, 
demand of high aerobic metabolism as well as 
great load of iron the susceptibility towards 
oxidative damage is greatly enhanced in brain 
cells [53]. This extensive metabolic demand 
relates to the requirement of large amounts of 
ATP for neurotransmission as well as for 
maintaining ionic gradients across cell 
membranes in the neurons. Thus, neuronal 
performance critically depends upon 
mitochondrial function and oxygen supply as 
most of neuronal ATP production depends on 
oxidative metabolism [54]. Mitochondria have 
critical functions which influence neuronal 
excitability, excitotoxicity, ATP production, fatty 
acid oxidation, apoptosis and necrosis control, 
amino acid cycle regulation, biosynthesis of 
neurotransmitters and regulating the 
homeostasis of cytosolic calcium. Mitochondria 
are the main site of ROS production and are 

therefore extremely vulnerable to oxidative 
damage [55]. Prolonged seizures produce 
sufficient cellular superoxide (O2-), principle by 
product of respiration, so initiate a cascade of 
events in the form of increased firing from 
neurons, excessive release of glutamate, 
activation of N-methyl-D-aspartate (NMDA) 
receptor, influx of cytosolic and mitochondrial 
calcium and increased ATP consumption. Thus, 
endogenous antioxidant defenses of 
mitochondria are overwhelmed resulting in 
mitochondrial damage [56, 57]. In SE, the levels 
of endogenous aconitase (marker of O2) are 
decreased in rat hippocampus particularly in CA3 
subregion [56]; moreover, SE impairs electron 
transport chain complexes (1, 3, and 4) [58] and 
there is reduction of mitochondrial N-acetyl 
aspartate (a metabolite synthesized from 
aspartate and acetyl-coenzyme A) in 
hippocampus [59]. Increase in mitochondrial 
H2O2 production, lipid peroxidation (increased 
malondialdehyde, MDA, and thiobarbituric acid, 
TBA) and mitochondrial DNA (mtDNA) damage 
are observed after a seizure [60]. An adaptive 
increase of mtDNA repair occurs immediately 
after ROS increase induced by acute SE. 
However, chronic increase in ROS production is 
accompanied by failure in the induction of 
mtDNA repair [61]. Damage to mtDNA and 
abnormal mitochondrial H2O2 production has 
been observed in the hippocampus of rats even 
three months after SE. After lithium-pilocarpine 
induced SE, OS markers (e.g. GSH) and specific 
markers of redox status in the mitochondria 
(coenzyme A) are decreased in the hippocampus 
and become permanently damaged during 
epileptogenesis and chronic epilepsy even when 
H2O2 production and mtDNA damage return to 
control levels [62]. Hence ROS formation 
contributes mechanically to chronic epilepsy via 
mitochondrial damage. 
 
3.2 Impairment of Antioxidant Systems  
 
During normal cellular metabolism various 
molecules are generated like ROS; including 
superoxide radical, hydrogen peroxide hydroxyl 
radical (·OH) and singlet oxygen (1O2). 
Physiological levels of ROS can be scavenged 
by enzymatic [e.g superoxide dismutase (SOD), 
glutathione peroxidase (GPx), catalase (CAT), 
glutathione reductase (GR), and peroxiredoxins 
(Prxs)] and non-enzymatic [e.g vitamin C, vitamin 
E and reduced form of glutathione (GSH)] 
antioxidant defense systems. However, 
excessive ROS levels due to increased ROS 
production, decreased antioxidant defense ability 
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or both leads to OS [63]. Superoxide radicals are 
highly reactive and can initiate pathological 
oxidative metabolism leading to the oxidation of 
macromolecules such as DNA, lipids and 
proteins. The nervous system contains 
antioxidant enzymes including SOD and GPx 
that are expressed in higher quantities than CAT 
[64]. This spectrum of enzymatic defenses 
suggests that the brain may efficiently metabolize 
superoxide, but may have difficulty in eliminating 
the hydrogen peroxide produced by this reaction 
(i.e., superoxide dismutation). Hydrogen peroxide 
accumulation is of major concern as the brain 
contains large quantities of iron and copper 
which may catalyze the formation of hydroxyl 
radicals that can induce lipid peroxidation [65]. 
Enhanced hydrogen peroxide in turn is reduced 
to water by peroxidases mostly GPx (and Prx) in 
the brain. GPx levels in neuronal tissue appear to 
be relatively low for the prevention of peroxide 
insults.  
 
Neuronal cell membrane contains high levels of 
polyunsaturated fatty acids [66] and is more 
vulnerable to injury by lipid peroxidation products 
than other tissues [67]. Lipid peroxidation is an 
irreversible neuronal damage of cell membrane 
phospholipids and a possible mechanism of 
epileptic activity [48]. Vitamin E (α-tocopherol) is 
a lipophilic alcohol and its food source is the root 
of wheat and vegetable oils. This substance has 
the ability to prevent the negative effects of lipid 
peroxidation in the brain tissue because it can 
absorb free radicals of oxygen. Epilepsy patients 
on antiepileptic therapy coadministered Vit E 
exhibited further decrease in EEG recordings 
and seizure frequency [68]. 
  
4. CONCLUSION 
 
The literature clearly indicates that Inflammation 
and OS are mediators of acute and chronic 
epilepsies. Disruption of the blood–brain barrier, 
the Cyclooxygenase signaling pathway and 
related prostaglandins, classical cytokines and 
their downstream targets, as well as Toll-like 
receptors are various pathways identified in 
hippocampus during epileptogenesis. These 
inflammatory responses promote neural 
hyperexcitability and neuronal degeneration. 
Seizures also dysregulate tightly regulated 
mechanisms for generation and elimination of 
ROS and RNS resulting in mitochondrial ROS 
generation, depletion of ATP stores and 
mitochondrial dysfunction, predisposing to 
neuronal hyperexcitation and neurodegeneration. 
The treatment strategies ameliorating 

proinflammatory and oxidative stress signals 
during seizure generation and epileptogenesis 
can seize the progression of disease. 
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