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ABSTRACT 
 

Aims:  To calculate the time independent Schrӧdinger’s equation for an electron in a one 
dimensional periodic potential so as to obtain the eigenvalues of the energy. 
Place and Duration of Study:  Department of Physics, Bayero University Kano, Nigeria. Jan 2016 
and July 2017. 
Methodology:  In this work, Intel Visual Fortran 17.0 update 3 for windows contained in Intel 
Parallel Studio XE 2017 Cluster Edition for windows was used to solve the required Schrödinger’s 
equation with periodic potentials together with Visual Studio Community 2015 using the nearly free 
approximation. 
Results:  Here we present the Electron Energy Bands in a one dimensional periodic potential 
presented in a reduced zone scheme based on nearly free approximation for rectangular, 
sawtooth, cosine, harmonic and interpolated periodic potential. The result shows that an increase 
in the potential height causes an increase in the band gap and vice versa. The result shows good 
agreement when compared with similar results in the same model. 
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Conclusion:  Our model can be used to solve the Schrödinger’s equation. The energy dispersion 
relation for all the potentials shows that the energy gaps increases with increase in the potential 
where the potential was varied from 10 to 15Ry whilst keeping the spacing fixed to a = 1.5ao. In 
Solid State Physics, a high energy gap between a filled band and an empty band corresponds to 
an insulator. Hence decreasing the potential height indicates that it is changing from an insulator to 
semiconductor.     
 

 
Keywords: Nearly free approximation; one dimension; periodic potential; schrodinger equation. 
 

1. INTRODUCTION  
 
The differences between metals, semiconductors 
and insulators are explained through band 
theory. Electron energy levels in Solids are 
arranged in bands which are closely spaced 
energy levels approximating to a continuum. Of 
particular importance are the conduction band 
and the valence band; electrical conduction 
requires the presence of electrons in the upper 
conduction band. Between the bands are the 
forbidden regions or energy gaps in which no 
energy states are allowed. In insulators, the 
electron in the conduction and valence band are 
separated by a large energy gap, whereas in 
metallic conductor the conduction and valence 
band are very close or overlapping. In 
semiconductors the energy band is such as to 
allow movement of electrons between the 
valence and the conduction band under the 
stimulus of heat or radiation. With small gaps the 
introduction of foreign atoms (doping) can have a 
dramatic effect on electrical conductivity. An 
important parameter in the band theory is the 
Fermi level, which is the top of the available 
electron energy levels at low temperatures. The 
position of the Fermi level in relation to the 
conduction band is a crucial factor in determining 
electrical properties [1]. 
 
A particularly demanding area encountered in 
any course on Solid State Physics is that of the 
energies of electrons in crystals [2]. A peculiar 
aspect of the energy spectrum of an electron in a 
periodic potential is the presence of allowed and 
forbidden energy regions. One dimensional 
approach is particularly suited to show from 
different points of view (weak binding, tight 
binding, quantum tunneling, continued fractions) 
the mechanism of formation of energy bands in 
Solids [3]. Band structure of a material is very 
important to calculating the materials property, 
specially for obtaining the electrical properties. 
Usually we need to have some information about 
the bands to simulate electron devices [4]. An 
interesting phenomenon that occurs in periodic 
potentials, and a topic which is at the heart 

semiconductor device operation, is the presence 
of energy bands. In many solids, there are 
intervals of allowed energies which particles 
experiencing that potential can take. That is, if 
one were to measure the energy of an electron in 
a periodic potential, they might measure values 
anywhere between two energies, say, a and b, 
but nowhere between two other energies, say c 
and d. The allowed energy intervals are known 
as energy bands and the energy difference 
between two bands is known as a band gap [5]. 
 
Thus, it is interesting to be able to compute the 
energy bands for a particular potential. Although 
not physically exact, the infinite periodic 
approximation is sufficiently good so as to 
provide some insight into the shape of the bands 
in real solids. Remarkably enough, the electronic 
bands in a one-dimensional system can be 
numerically obtained by solving an approximate 
eigenvalue equation. Modeling the one-
dimensional case is much easier than doing it for 
higher dimensions, since it only allows one type 
of periodicity, while higher dimensions allow 
plenty of possible periodic lattices [6]. In many 
solids, such as crystals and semiconductors, 
atoms are arranged in an organized and periodic 
manner. This periodicity in the organization of the 
atoms leads to an electric potential that is also 
periodic in space. Describing the behavior of 
particles, such as electrons, in such potentials is 
a primary topic in any introductory solid state 
physics course, and remains an important area 
of research in modern electronics [7]. In the band 
theory framework, insulators are non-magnetic, 
with negligible electronic contribution Ce to the 
specific heat, whereas in metals, the electrons 
contribute a significant term linear in T which 
dominates at low temperatures. In addition, 
metals exhibit temperature-independent Pauli 
paramagnetism. These properties of the metal 
are determined by the highest energy occupied 
electronic states Ce, whose energy Ef defines the 
Fermi energy [8]. 
 
Energy dispersion relations have been 
investigated by several researchers using 
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different models. Abe (1992) calculated the 
energy bands of electrons in a one dimensional 
periodic potential consisting of multiple 
rectangular barriers and wells per period using 
transfer matrix method. The energy bands was 
derived from the reflection and transmission 
amplitudes of the individual rectangular barriers 
and easily extended to the cases of complex 
configurations of barriers and wells n the unit 
cell. The numerical results suggested the 
possibility of new type of super lattice devices 
composed by two different quantum wells inside 
the unit cell [9]. Zheng and Ando (2002) also 
studied the electron energy spectrum of a 
quantum-wire array consisting of an interface-
corrugated quantum well. It is calculated for 
actual structures with periodic well-width 
variation by the [numerical diagonalization of the 
Hamiltonian matrix [10]. Almbladh, Nelander and 
Pedersen (2005) illustrated the band structure 
concept by simulating the model systems in one 
and two dimensions. They used two mat-lab 
scripts named band. M and lab. M. The first 
program look at how band structure emerge in 
one dimension, and how it depends on the 
strength of the potential and separation between 
the ions. The reduced band scheme and 
meaning of reciprocal lattice were also 
discussed. The second program considered a 
two dimensional model, and the importance of 
potential strength was looked at and how bands 
overlap in the energy [11]. Fysik and Wacker 
(2010) considered electron in a periodic 
potential. The potential results both from the 
interaction of the electrons with ions and with 
other electrons, which are considered to provide 
a fixed background (called mean field). This 
entirely neglects correlations between the 
kinetics of the single electron and the others, and 
thus only serves as an approximation for the 
complex many Physics scenario. However, this is 
rather good for many purposes, in particular if 
more complicated potentials are used as justified 
within density functional theory [12]. Tanimu 
(2017) uses the Bloch’s theorem in the absence 
of uniform electric field to study the electron 
states in a one dimensional periodic potential 
superimposed with an array of delta-like function. 
He solves the Schrodinger’s equation using 
Newton Raphson procedure in MATLAB show 
how the dispersion relation changes with the 
energy of the particle [13]. 
 
In this research, Intel Visual Fortran 17.0 update 
3 from Intel® Parallel Studio XE 2017 Cluster 
Edition for windows was used to solve the 
required Schrödinger equation with periodic 

potential in connection with Visual Studio 
Community 2015 using the computer simulation 
program “Energy Bands” written by Clarke and 
Martin [14] edited by Boardman to obtain the 
energy bands in the reduced zone scheme 
derived from nearly free electron approximation.  
 

1.1 Theoretical Backgroun d 
 
The time-independent Schrӧdinger equation for 
an electron in one-dimension is      
                                                          ��ħ�

���
��

�	� + �()� �() = ��()                    (1) 

  
If we use the atomic units and measure energies 
in Rydbergs and distance in Bohr radius, then 
this is equivalent to setting ħ� = 1, me = ½, hence 
for an electron equation (1) takes the form: 
 

 ����
�	� +  �()�ψ() = �ψ()                        (2) 

 
Where V(), the potential, is periodic with period 
a, i.e. V() = V(+�a) and m is an integer.  
 
It might appear that ψ() should also be periodic; 
in fact the reality is more complicated. The 
probability density ψ∗() ψ() is indeed  periodic 
with period a, but this can still hold if ψ() is 
equal to the product of a function which is 
periodic (u(x) say) and a complex quantity whose 
product with its own complex conjugate is unity. 
The general form of such a complex quantity 
must be exp.(if[,k]), i.e.  
 

ψ() = exp.(if[,k])u() and �*(x) = exp. (-if[x,k])u*(x) �* �()ψ () = exp. (-if[,k])u*()exp.(if[x,k]u(x)                                      �*(x) ψ (x) = u*()�(),                               (3) 
 
It shows that the probability density is of period a. 
We know that for V( ) → 0,  the possibility 
suggests itself that exp.(if[, �]) = exp("�)  and 
ψ() = exp(ikx)uk(), where k subscript on uk(x) 
implies a dependence of the periodic function on 
k. Wave functions of this form are known as 
Bloch functions. (Bloch first established this 
result in the present connection, on the basis of 
the periodic potential and (‘periodic boundary 
condition’). One consequence of the form of the 
Bloch functions is that there are states at k + �#$% (& =  ± 1, ±2, … ) with the same energy as a 

state at k. Consider the state  ψ k( )  =exp("�)�k() and the state at k' = k + 
�#$% ; 

 
ψk' () = exp. (ik′) uk' ()                           (4) 
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ψk′() = exp. (ik)exp (
+�#$	% )uk' (),            (5) 

 
Where exp. (i

�#$	% ) is of period a so that exp. 

(i
�#$	% )uk' (x) is of period a. A possible form for 

this function, which correspond to a solution for 
equation (1) is  
 

exp. (i
�#$	% )uk'(x)= uk(x),                              (6) 

 
In which case, 
   

ψk() = ψk' (),                                            (7) 
 
i.e. the two states are the same. 
 
Substituting ψk()  = exp("�)�k() into equation 
(2) gives 
 

  [− ��./(	)�	� − 2"� �./(	)�	 + [�� + �()]�0() = 

Euk().         (8) 
 
This is another form of Schrӧdinger’s equation, in 
which analytical results are unobtainable, only 
numerical techniques can be used to achieve 
accurate results. 
 
However, there are three entirely equivalent 
ways in which the E-k relationship can be 
presented, i.e.  
 

(a) The extended zone scheme, in which E is 
a single-valued function of k and all the 
relevant Brillouin zones are shown. 

(b) The reduced zone scheme, in which E is a 
multivalued function of k and only the first 
Brillouin zone is shown. 

(c) The repeated or periodic zone scheme, in 
which E is a multivalued function of k and 
all the relevant Brillouin zones are shown. 

 
Furthermore, E (k) = E (-k), and the electron 
energy depends on λ but not depend on whether 
the electron is traveling in the +x or the –x 
direction, so that it is only necessary to present 
the results for k>0. In this work, and in the graphs 
generated by the computer program, the reduced 
zone scheme is used for 0<k<

$% [12]. 

 
1.2 The Periodic Potential 
 
In a real crystal a periodic potential arises from 
the Coulomb interaction of the electron with all of 
the atomic nuclei and all of the other electrons. In 
this program, the potential can be choose 

between a number of potentials which have been 
selected principally with a view to their heuristic 
value rather than to their similarity between real 
crystal potentials [12]. The potentials are of 
period ‘a’. The origin is an inversion centre, i.e. 
V ()  = V (−)  so that it is only necessary to 
specify them for 0≤ () ≤a/2. The potentials are: 
 

(i) A rectangular potential: One of the most 
famous potentials in theoretical mechanics, 
the potential is defined as 

 

 �() = 70,                               0 ≤  < 9%� − :�;
<=,         9%� − :�;  <  ≤ %�

� 
 
Where a and b are the period and width of the 
potential respectively. 
 

(ii) A Sawtooth potential: An asymmetric 
potential in the shape of a sawtooth signal, 
defined in each lattice unit by the formula 

 �() = 2�= > , 0 <  < >2 

 
This form is used so that V(x =a/2) = V0. 

 

(iii) A cosine potential: The most simple 
potential, it has only one Fourier 
coefficient. The frequency of the potential 
coincides with that of the spatial lattice, so 
it repeats after a distance a( = 1 as our unit 
of length) 

 

V (x) = V0 {1 − cos( �$	% )}. 
 

(iv) A harmonic potential: This is a periodic 
potential that is proportional to x- squared. 
The potential is defined as 

 

V(x) = 4V0 
	�
%�, 0 < x< %� 

 
So that again V (x = a/2) = V0.    

 
(v)  Finally, an arbitrary potential can be set up 

by linear interpolation specifying the 
number of points, their x-values and the 
potential at each point. 

 
1.3 The Nearly Free Electron Approxi-

mation  
 
The opposite extreme of very low values of Vo a 
can be treated using the nearly-free 
approximation. If V() = 0, then ψ() = exp.(ik) 



 
 
 
 

Bature and Nura; ACRI, 10(4): 1-12, 2017; Article no.ACRI.37145 
 
 

 
5 
 

and E = k2. If V() is small we can treat it as a 
perturbation and from the usual expression for 
non-degenerate perturbation theory, up to 
second order, 
 

� =  �� + 1A  B �0∗  ()�()�()CD
E

+  1A�  B  FG ��0H∗DE  ()� ()�0CF�C�I
(�� −  � ′�)

J∞
�∞

 

 

=  �� + 1A B exp(−"�) K LI exp M"2NOA P exp("�) CJQ
+R�Q

D
E

 

 

+ ID�  G SG TUVW�+0 ′	X ∑ Z[ TUV9\�][^_ ; TUV(+0	)�	`a\bca_d S� �0′(0�� 0′�)J∞�∞0′e0                                   

(9) 
 
The factors 1/a and 1/a2 arise because the norm 
of the wave functions over the unit cell a. 
Because the exponential functions are 
orthogonal over the unit cell, 
 � =  �� +  LE +  ∑ Z[H

f0�� 90� �][_ ;�g
JQhR �Qh eE                  (10) 

 
Equation (2.31) is accurate except when there is 
degeneracy, or near degeneracy, between the 
states at k and at k - 2πj/a, that is, 
 |�| ≈  S� −  �$hD S,       (O ≠ 0)                             (11) 

 
Leading to 
 � ≈  −� +  �$h% ,                                                (12)  

 
It implies that 
 � ≈  $h%      (O =  ±1, ±2, … ),                              (13)  

    
As will be the case in the region of the zone 
boundaries. We then need to consider the 
explicit form of the wave functions which in this 
case all the wave functions considered are 
periodic just as proposed by the Bloch theorem 
[15]. 
 
2. MATERIALS AND METHODS  
 
This research which is about electron energy 
band calculation in a one dimensional periodic 
potential is computational. The subroutine dsyev 
(double precision symmetric eigenvalues and 

eigenvectors) from LAPACK 3.6 (linear algebra 
package) in MKL (Mathematical Kernel Library) 
which is inside the Intel Parallel Studio XE 2017 
Cluster edition for windows together with Visual 
Studio 2015 Community using the Energy Band 
program by Clarke and Martin, in A. D. 
Boardman, (1980) to calculate the eigenvalues of 
the Hamiltonian (H). The essential materials for 
the research are: a laptop, windows 10 system, 
Intel Parallel Studio XE 2017 cluster edition for 
windows, Visual Studio 2015 Community and the 
subroutine dsyev from LAPACK in MKL. 
 
The program “Energy Bands” from Physics 
program [12] was modified by replacing the NAG 
subroutine with DSYEV from LAPACK in MKL 
and used to calculate the first three energy levels 
for an electron subject to a given periodic 
potential. The program was used to choose the 
potential from the set of given periodic functions 
described in section 1.2 above. The type of 
potential was selected (NPOT) integer, the height 
of the NPOT was then selected (VO) as real 
number, the period (a) was selected as real 
number and lastly, the width (b) was also 
selected as real number. In each case, the 
potential was chose and the parameters             
were inserted up to the last potential. The graphs 
were plotted using Origin 5.0 because it is user 
friendly even though the subroutine graph was 
there inside the program but not used in this 
work.   
 
The main program “Energy Bands” was used to 
calls the following subroutines in order to prepare 
the data for the calculations. 
 

• Subroutine francs:  
 

This was used to Fourier analyse the 
potential. For the case of all the potentials, 
for the purpose of obtaining the Fourier 
coefficients, except the interpolated potential, 
in which analytic expressions for the Fourier 
coefficients are used. 
 

• Subroutine energy: 
 
This subroutine is used to calculate the first 
three energy levels and corresponding state 
vectors for given k and given periodic 
potential. 
 

• Subroutine dsyev:  
 
This is used to calculates eigenvalues and 
optionally eigenvectors of a real symmetric 
matrix using double precision. 
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The subroutine FRANCS (NTERMS, NDATA, 
DC, A) was called to find the coefficients of the 
cosine terms in the Fourier series, next the 
subroutine ENERGY was modified to be the 
subroutine ENERGY (K, E, EV,ND, N, LWORK, 
WORK, DC, A, H) so as to be to call DSYEV to 
calculates the energy eigenvalues and 
eigenvectors. Lastly, the subroutine DSYEV (S, 
T, N, H, ND, E, WORK, LWORK, INFO) was 
called within the subroutine ENERGY to 
calculate the eigenvalues and eigenvectors. All 
parameters inside each subroutine presents 
there meaning as used in the program.  
 
3. RESULTS AND DISCUSSION 
 
The program was run for rectangular, sawtooth, 
cosine, harmonic and the interpolated periodic 
potentials. A series of runs were performed, 
varying the chosen potential VO and the period a 
while keeping other parameters constant. The 
first three energy levels were computed. This 
describes the relationship between the energy E 
and the wave vector k. All inputs and outputs are 
in atomic units, that is the unit of distance is Bohr 
radius ao (1ao = 0.529Ao) and the unit of energy is 
Rydberg Ry (1Ry = 13.6ev). The energy 
dispersion relations were plotted.  
 

Fig. 1 shows the energy dispersion relation for 
rectangular, sawtooth, cosine, harmonic and 
interpolated periodic potential with potential 
height VO = 0 and period a = 1.5 for the first three 
energy levels, with width b = 0.5 only when the 
rectangular potential is employed. It was 
observed that in the absence of potential there is 
no energy gap or band gap. Hence the presence 
of potential indicates the presence of band gap 
and vice versa. Since the potential is 0 for all the 
five potentials indicates that Fig. 1 represents 
energy dispersion relation for all the potentials 
since there is no potential height in each 
situations.  
 
Figs. 2 – 11 shows the energy dispersion relation 
for rectangular, sawtooth, cosine, harmonic and 
interpolated periodic potentials. In which the 
potential was varied from 10 to 15Ry while the 
spacing was kept fixed to 1.5ao. It shows that as 
the potential increases, the band gap also 
increases and vice versa. In Solid State Physics, 
a high energy gap between a filled band and an 
empty band corresponds to an insulator. We also 
see that for a sufficiently high potential depth the 
variation of the lower bands is small compared 
with the energy gaps. This means that the low 
energy bands tend to be flatter when compared 

 
 

Fig. 1. E-k diagram for rectangular, Sawtooth, Cosi ne, Harmonic and Interpolated potentials 
with period a = 1.5, width b = 0.5 and potential he ight V O = 0 for the first three energy levels 
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Fig. 2. E-k diagram for rectangular potential with period a = 1.5, width b = 0.5 and potential 
height v o = 10 for the first three energy levels 

 

 
 

Fig. 3. E-k diagram for rectangular potential with period a = 1.5, width b = 0.5 and potential 
height v o = 15 for the first three energy levels 

  
with the band separation. It is relatively simple to 
compare graphically the energy difference 
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and or between the second and third band at k = 
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prediction of the nearly free approximation. It 
also shows that the presence of potential height 
indicates the difference in the periodic potentials, 

this is so because the definition of their potentials 
varies for each potential as defined above in 
section 1.2. 

 

 
 

Fig. 4. E-k diagram for sawtooth potential with per iod a = 1.5 and potential height v o = 10 for 
the first three energy levels 

 

 
 

Fig. 5. E-k diagram for sawtooth potential with per iod a = 1.5 and potential height v o = 15 for 
the first three energy levels 
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Fig. 6. E-k diagram for cosine potential with perio d a = 1.5 and potential height v o = 10 for the 
first three energy levels 

 
 

Fig. 7. E-k diagram for cosine potential with perio d a = 1.5 and potential height v o = 10 for the 
first three energy levels 
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Fig. 8. E-k diagram for harmonic potential with peri od a = 1.5 and potential height v o = 10 for 
the first three energy levels 

 

 
 

Fig. 9. E-k diagram for harmonic potential with peri od a = 1.5 and potential height v o = 15 for 
the first three energy levels 
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Fig. 10. E-k diagram for interpolated potential wit h period a = 6.0, number of points = 5 and 
potential height v o = 10 for the first three energy levels 

 

 
 

Fig. 11. E-k diagram for interpolated potential wit h period a = 6.0, number of points = 5 and 
potential height v o = 15 for the first three energy levels 

 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
2

3

4

5

6

7

8

 E1

 E2

 E3

E
ne

rg
y 

R
y

Wave vector k(1/Bohr radii)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
2

3

4

5

6

7

8

9

10

 E1

 E2

 E3

E
ne

rg
y 

R
y

Wave vector k (1/Bohr radii)



 
 
 
 

Bature and Nura; ACRI, 10(4): 1-12, 2017; Article no.ACRI.37145 
 
 

 
12 

 

4. CONCLUSION 
 
In this work, the energy dispersion relation was 
computed for rectangular, sawtooth, cosine, 
harmonic and interpolated periodic potential for 
electron in a one dimensional periodic potential 
have been investigated based on nearly free 
electron approximation in the reduced zone 
scheme using the program “Energy Bands” from 
Physics program which was modified by 
replacing the NAG subroutines F02AAF and 
F02ABF with DSYEV obtained from LAPACK 3.6 
which is part of the MKL in Intel Visual Fortran 
17.0 update 3 for windows which is inside the 
Intel Parallel Studio XE 2017 Cluster Edition for 
Windows together with Visual Studio Community 
2015. The energy dispersion relation for all the 
potentials shows that the energy gaps increases 
with increase in the potential where the potential 
was varied from 10 to 15Ry whilst keeping the 
spacing fixed to a = 1.5ao. The computed results 
reproduced well when compared with the results 
of Urtiaga and Martinez, 2016.   
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