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ABSTRACT 
 

The study reports on all- to- all chaos synchronisation in a network of networks based on the Ikeda 
model. The study considered one of the simplest cases. It found the existence and stability 
conditions for such a synchronisation regime. Numerical simulations validated the analytical 
findings. The results can be of certain importance in achieving high- level output for the coupled 
systems and information processing. 
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1. INTRODUCTION 
 
Networks or a network of networks is a 
widespread concept in a world-wide-web, 
population dynamics, neuroscience, power grids, 
communication, social and computer systems, 
etc. Research of such interacting systems is a 
very hot topic in nonlinear dynamics, see, e.g. [1-
6] and references therein. 

  
Chaos synchronisation [1] as a control method is 
of fundamental importance in a variety of 
complex physical, chemical and biological 
systems [7]. Synchronisation of chaos refers to a 
process wherein two (or many) chaotic systems 
(either equivalent or nonequivalent) adjust a 
given property of their motion to a common 
behaviour due to a coupling or to a forcing 
(periodical or noisy) [7]. In the context of coupled 
chaotic elements, many different synchronisation 
states have been studied, namely complete or 
identical synchronisation, phase synchronisation, 
lag synchronisation, generalised synchronisation, 
anticipating synchronisation, etc. [7-9]. Complete 
synchronisation [10] was the first to be 
discovered and is the simplest form of 
synchronisation in chaotic systems. It consists in 
perfect hooking of the chaotic trajectories of two 
systems which is achieved using a coupling 
signal, in such a way that they remain in step 
with each other in the course of the time. 
Generalised synchronisation [11] goes further in 
using completely different systems and 
associating the output of one system to a given 
function of the output of the other system. 
Coupled nonidentical oscillatory or rotatory 
systems can reach an intermediate regime of 
phase synchronisation [12-14], wherein locking 
of phases occurs, while correlation in the 
amplitudes remains weak. Lag synchronisation 
[15] is a step between phase synchronisation 
and complete synchronisation. It implies the 
asymptotic boundedness of the difference 
between the output of one system at time t and 
the output of the other shifted in time (lag time). 
This implies that the two outputs lock their 
phases and amplitudes, but with the presence of 
a time lag. In anticipating synchronisation [16-17] 
the driven system state is synchronised to the 
future state of the driver system. For some other 
types of synchronisation see other references 
[18-21] also. 

 
Synchronisation in complex systems is of a 
certain importance in governing and performance 
improving point of view, e.g. enhancing emission 
power from such systems [7]. Additionally, from 

the fundamental point of view synchronisation of 
coupled (chaotic) systems eliminates some 
degrees of freedom of the coupled system and 
so produces a significant reduction of complexity, 
thus allowing for significant simplification of 
computational and theoretical analysis of the 
system. 
 

As synchronisation in a wider sense is 
associated with communication, a study of 
existence and stability conditions for 
synchronisation is of paramount importance in 
networks. Synchronisation is important in chaos- 
based communication system to decode the 
transmitted message [7,17]: At the transmitter 
part of the communication system a message is 
masked with chaos, then chaos masked 
message is transmitted to the receiver system. At 
the receiver part of the communication system 
due to the chaos synchronisation between the 
transmitter and the receiver systems chaos is 
regenerated. Finally, deducting the receiver input 
and the receiver output one can decode the 
transmitted message, (as shown in Fig. 1). 
 

This paper studies chaos synchronisation in one 
of the simplest cases of the network of networks 
based on the Ikeda system-paradigmatic model 
of chaotic dynamics in time- delay systems [22]. 
In case of constant time delays, analytically the 
existence and sufficient stability conditions for 
complete synchronisation between all the 
constituents of the network were derived. This 
supports the analytical findings with the 
numerical simulations. This paper also present 
example of chaos synchronisation between the 
constituent Ikeda models in case of variable time 
delay systems. 
 
The organisation of the rest of this paper is as 
follows. In Sec. 2 introduction of the working 
model and the results of the analytical study 
have been presented. Section 3 is dedicated to 
the numerical simulations of all-to-all chaos 
synchronisation between the Ikeda models, 
including the case of modulated time delays. The 
results are summarised in Sec. 4. 
 

2. SYSTEM MODEL 
 
Consider all-to-all synchronisation between the 
chaotic Ikeda systems with the following coupling 
topology (see, Fig. 2): x-Ikeda system governs 
both networks (y, z) and (u, w) which consists of 
only two unidirectionally coupled Ikeda systems. 
For simplicity, consider the case when all the 
Ikeda systems are identical and time delays in 
the network are constant. 
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Fig. 1. Schematic view of chaos based communication system. For details, see, text 
 

 
 

Fig. 2. Schematic view of the system under consideration, see text for details 
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 xmx
dt

dx
sin1                                    (1) 

 

162 sinsin  xmymy
dt

dy
             (2) 

 

183 sinsin  ymzmz
dt

dz
            (3) 

 
 

1
74 sinsin  xmumu

dt

du
       (4) 

 

195 sinsin  umwmw
dt

dw
      (5) 

 

Here )(   txx .The same is valid for the 

other dynamical variables wuzy ,,, . 

 
Initially the Ikeda model was introduced to 
describe the dynamics of an optical bistable 
resonator, playing an important role in electronics 
and physiological studies and is well-known for 
delay-induced chaotic behaviour, see e.g. [22] 
and references therein. Later it was established 
that the Ikeda model or its modifications can be 
used to describe the dynamics of an opto-
electronical, an acousto-optical systems and 
even the dynamics of the wavelength of the 
Distributed Bragg Reflector (DBR) Laser [22]. 
Furthermore, this investigation is of considerable 
practical importance, as the equations of the 
class B lasers with feedback (typical 
representatives of class B are solid-state, 
semiconductor, and low- pressure CO2 lasers 
[23]) can be reduced to an equation of the Ikeda 
type [24]. 
 
Physically  x is the phase lag of the electric field 
across the resonator (it should be noted that in 
the opto-electronical and acousto-optical 
systems x is proportional to the voltage fed to a 

modulator [12]);   is the relaxation coefficient 
for the driving x and driven y, z, u, w  dynamical 

variables;    is the feedback loop time delay;  
 

1  is the coupling time delay between x and y, y 

and z, x  and  u, u and w; the case will be 

considered as  = 1 ; m1,m2,m3,m4,m5 are the 

feedback strengths for the Ikeda systems x, y, z, 
u, w respectively; m6,m8,m7,m9 are the coupling 
strengths between the systems x and y, y and z, 
x and u,  u and w, respectively.  
 
It is noted that system x is directly connected to 
the system y and connection to system z occurs 
via system y.  Analogously, system x is directly 
connected to system u and connection to system 
w occurs via system u. It should also be 
emphasised that there is no direct connection 
between the networks (y, z) and (u, w). 
 
As mentioned above the all-to-all synchronisation 
was considered for the coupling topology 
presented in Fig. 2. Firstly, the complete 
synchronisation case between the variables x 
and y is considered. It is straightforward to 
establish that the synchronisation error  

yxyx  ,   under the condition  

 

612 mmm                                                   (6) 

 

obeys the dynamics 
 

 xm
dt

d
yxyx

yx
cos,2,

,



              (7) 

 

Obviously 0,  yx   is a solution of system (7). 

 

The sufficient stability condition of the 
synchronisation regime  
 
x=y                                                                    (8) 
 
can be found by applying the Lyapunov-
Krasovskii functional approach [25-26]: 
 

2m                                                             (9) 

  
By applying this procedure to synchronisation 
between the dynamical variables y and z, x and 
z, x and u, u and w, x and w, y and u, z and u, y 
and w, z and w the study establishes that for the 
configuration in Fig. 2 all-to-all complete 
synchronisation  
 

wuzyx                                 (10) 

 

occurs under the following conditions: 

 

9876543221 ;2 mmmmmmmmmm                                            (11) 
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The formula (11) is the existence condition and 
formula (9) is the stability condition for all-to-all 
complete synchronisation (10). 
 

In the next section the results of the numerical 
simulations of this synchronisation regime are 
presented. 
 

3. NUMERICAL SIMULATIONS AND 
DISCUSSION 

 

This section numerically demonstrates that how 
the analytical findings of the previous Section are 
validated. Synchronisation quality is 
characterised by the cross-correlation coefficient 
C [27] between the dynamical variables say x 
and y: 
 






22 ))(())((

)()()((
)(

yttyxtx

yttyxtx
tC      (12) 

where the brackets <.> represent the time 

average;  t is a time shift between the 

dynamical variables. In the present case 0t . 
This coefficient indicates the quality of 
synchronisation: C=1 means perfect complete 
synchronisation. 
 
Fig. 3 portrays time series of the system z for 
parameter values. 
 

.5,162,8,01.8 2198765432   mmmmmmmmmm

Fig. 4 presents synchronisation error dynamics 

wzwz  ,,   versus time for parameters as in 

Fig. 3. 99.0, wzC  is the cross-correlation 

coefficient between the systems z and w. For 
parameter values as in for Fig. 3 the other cross-
correlation coefficients are  

 

99.0,,,,,,,,,  wuuzwyuyzywxuxzxyx CCCCCCCCC . 

  

 
 

Fig. 3. Numerical simulation of all-to-all synchronization between Ikeda systems with the 
coupling scheme described in Fig.2, Eqs. (1-5) for 

.5,162,8,01.8 2198765432   mmmmmmmmmm  

Dynamics of the system z is shown. Dimensionless units 
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Fig. 4. Error dynamics wzwz  ,   versus time t for parameters as in Fig. 3  

wzC ,   is the cross-correlation coefficient between the systems z and w. Dimensionless units 

 

The value of the cross-correlation coefficients 
testifies to the high- quality chaos 
synchronisation, which is vital for information 
processing in chaos-based communication 
systems and other possible applications. In 
numerical simulations, the synchronisation case 
between the outermost Ikeda models- z and w 
are mainly presented. 
 
It should be noted that the approach based on 
the Lyapunov-Krasovskii method gives a 
sufficient stability condition for synchronisation, 
but does not forbid synchronisation [25] when the 
condition (9) is not met. In Fig. 5 and Fig. 6 the 
case of chaos synchronisation is presented when 
the stability condition for all-to-all synchronisation 
(9) is violated. Fig. 5 shows the dynamics of the 
system z for parameter values 
 

.5,162,8

,01.3

219

8765432









mmm

mmmmmmm
Er

ror wzwz  ,  dynamics is presented in   Fig. 

6. 

It is seen that despite the fact that condition (9) is 
violated, there is a high degree of 

synchronisation. 1, wzC  is the cross-correlation 

coefficient between the systems z and w. For this 
case the other cross-correlation coefficients are  
 

1,,

,,,,,,,





wuuz

wyuyzywxuxzxyx

CC

CCCCCCC
 

 
It was noticed that larger values of the relaxation 

coefficient    decrease the amplitude of the 
chaotic vibrations. Comparing the dynamics of 
the variable z (Fig. 3 and Fig. 5) and the error z-
w dynamics (Fig. 4 and Fig. 6) one should pay 
attention to the scale on the ordinate axis. 
 

Next, this study considers the case of variable 
time delays in the constituent Ikeda models, e.g. 
both the feedback and coupling time delays are 
variable. The role of modulated feedback and 
coupling time delays in controlling chaos in some 
laser systems was studied by Shahverdiev, 2016 
[28].
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Fig. 5. Numerical simulation of all-to-all synchronization between Ikeda systems with the 
coupling scheme described  in Fig. 2, Eqs. (1-5) for  

.5,162,8,01.3 2198765432   mmmmmmmmmm Note that stability 

condition (4) is not fulfilled. Time series of the system z is shown. Dimensionless units 
 

 
 

Fig. 6. Error dynamics  wzwz  ,    versus time t for parameters as in Fig. 5  wzC ,  is the 

cross-correlation coefficient between the systems z and w. Dimensionless units 
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This study considers three cases of time delay 
modulations: a) sinusoidal modulation of time 
delays; b) chaotic modulation of time delays; c) 
combined sinusoidal and chaotic modulation of 
time delays. 
 
For sinusoidal modulations,  
 

),sin()( tt ma                                     (13) 

 

where    is the zero-frequency component 

(constant time delay) a  is the amplitude, m  is 

the frequency of the modulation. For this case, 
following set of the new parameters is used: 

5 , 1a , 1.0m . Fig.7 shows the 

dynamics of the Ikeda model x.  Numerical 
simulations show that for this case the correlation 
coefficients between the junctions are: 
 

1,,,

,,,,,,





wuuzwy

uyzywxuxzxyx

CCC

CCCCCC
 

 
Fig. 8 demonstrates highest quality 
synchronisation between Ikeda models z and w: 

Correlation coefficient 1, wzC . Fig. 8(a) pictures 

the dynamics of variables x (solid line) and y 
(dotted line) in one plot. It is clear that after some 
transient processes the dynamics of both 
variables coincide with each other. Correlation 

coefficient 1, yxC . 

 
For the case of chaotic modulations of the 
coupling time delays the following form is 
chosen: 
 

),(8.05)( 1 txt                                         (14) 

 

where )(1 tx   is the chaotic solution of the 

Ikeda model: 
 

)5(sin10)(2 11
1  txtx
dt

dx
.                   (15) 

 
Chaotic dynamics of  x  for parameters as in 
Eq.(15) and  
 

5,162,8

,01.3

2198

765432









mmmm

mmmmmm
    

is shown in Fig. 9. According to the numerical 

simulations, for the case of chaotically modulated 
feedback and coupling time delays the 
correlation coefficients between the Ikeda 
models are: 
 

1,,,,

,,,,,,





wzwuuzwy

uyzywxuxzxyx

CCCC

CCCCCC
. 

 
Finally, the case of the combined sinusoidal and 
chaotic modulations of the coupling time delays 
is considered as: 
 

)1.0sin()(5.05)( 1 ttxt  .                         (16) 

 
The results of the numerical modelling for this 
case are: 
 

1,,,,

,,,,,,





wzwuuzwy

uyzywxuxzxyx

CCCC

CCCCCC
. 

 
In support of high- quality synchronisation 
between the driven Ikeda models, in Fig. 10 
dependence of z on w is demonstrated. 
 
This study has also numerically experimented 
with different amplitudes and frequencies of the 
modulation and obtained that the synchronisation 
quality is quite robust to such modulations.  As 
shown by the numerical simulations the                   
effect of dithering coupling and feedback time 
delays on the synchronisation quality             
between the Ikeda models is not pronounced.               
In other words, the studied configuration of   
Ikeda models is quite robust to the                    
modulation of the coupling and feedback     
delays. 
 
Thus, these results testify that driven Ikeda 
models, although are not coupled directly 
between themselves, can be synchronised quite 
robustly by a single driver model even under the 
conditions of the dithered feedback and coupling 
time delays. 
 
Complete synchronisation between two Ikeda 
models was investigated in previous work [29] 
where the authors considered the case of 
sinusoidal modulation of the feedback time 
delays. In this paper, complete synchronisation is 
considered under the modulation of both 
feedback and coupling time delays (including the 
case of chaotic modulation) in a network 
(however simple) Ikeda system. 
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Fig. 7. Chaotic dynamics of Ikeda model x for sinusoidal modulations of the feedback and 
coupling time delays. Dimensionless units 

 

 
 

Fig. 8.Synchronization between Ikeda models z and w in case of sinusoidal modulations of the 
feedback and coupling time delays: z versus w for parameters  

.5,162,8,01.3 2198765432   mmmmmmmmmm Correlation 

coefficient 1, wzC . Dimensionless units 
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Fig. 8(a).Dynamics of Ikeda models x (solid line) and y (dotted line) for the parameter values as 

in Fig. 8. Correlation coefficient .1, wzC  

 

 
 

Fig. 9. Chaotic dynamics of Ikeda model x for chaotic modulations  

)(8.05)( 1 txt   of the feedback and coupling time delays. Dimensionless units 
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Fig. 10. Synchronization between Ikeda models z and w in case of combined chaotic and 
sinusoidal modulations of the feedback and coupling time delays: z versus w for parameters  

,5,162,8,01.3 2198765432   mmmmmmmmmm

)1.0sin()(5.05)( 1 ttxt  . Correlation coefficient .1, wzC Dimensionless 

 units 
 
It should also be mentioned that chaos 
synchronisation is not the only phenomenon 
observed in an ensemble of chaotic systems. 
Another very interesting phenomenon is the 
realisation of chimaera states in chaotic systems. 
In another study [30], the authors have studied 
dynamical properties of one-dimensional 
ensembles of identical chaotic oscillators with 
non-local coupling. The authors have established 
that such systems can demonstrate the transition 
from complete chaotic synchronisation to 
spatiotemporal chaos when the coupling 
coefficient decreases. This transition is called the 
coherence – incoherence transition and, for 
certain networks, is accompanied by the 
appearance of chimaera states. 
 
Apart from this, breathers and travelling waves 
can also be observed in some networks [31]. The 
study of these very interesting phenomena is 
beyond the scope of this research. 
 
4. CONCLUSIONS 
 
This study reports on all-to-all complete chaos 
synchronisation in unidirectionally nonlinearly 

coupled Ikeda systems. Ithave considered both 
constant time delays (feedback and coupling 
times) and variable time delays cases. In case of 
constant time delays, analytically the existence 
and stability conditions for complete chaos 
synchronisation have derived. Numerical 
simulations fully support the analytical findings. 
As synchronisation is vital in communication 
systems, these results are of certain importance 
for information processing purposes. Additionally, 
the results are useful for obtaining high emission 
power from such networks. Besides these results 
testify that driven Ikeda models, although are not 
coupled directly between themselves, can be 
synchronised quite robustly by a single driver 
model even under the conditions of the dithered 
feedback and coupling time delays. This studied 
configuration can serve as a motif (building 
block) for much more complex networks. 
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