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Abstract
We show that Gaussian process regression (GPR) allows representing multivariate functions with
low-dimensional terms via kernel design. When using a kernel built with high-dimensional model
representation (HDMR), one obtains a similar type of representation as the previously proposed
HDMR-GPR scheme while being faster and simpler to use. We tested the approach on cases where
highly accurate machine learning is required from sparse data by fitting potential energy surfaces
and kinetic energy densities.

1. Introduction andmethods

Representations of a multivariate function f(x) ,x ∈ RD with low-dimensional terms are advantageous, as
low-dimensional functions are easier to construct, especially from sparse data, and are advantageous in
certain applications, most notably when the function needs to be integrated, such as in quantum dynamics
calculations [1, 2]. One approach for such a representation is high-dimensional model representation
(HDMR) formalized by Rabitz et al [3–5], which is constructed as a sum of terms depending on subsets of
original coordinates (xi1 ,xi2 , . . . ,xid) , d< D:

f(x)≈ f0 +
D∑
i=1

fi (xi)+
∑

1≤i<j≤D

fij
(
xi,xj

)
+ · · ·+

∑
{i1i2...id}∈{12...D}

fi1i2...id (xi1 ,xi2 , . . . ,xid) . (1)

We specifically consider random sampling (RS) HDMR [3, 5] which allows obtaining all the terms from one
and the same dataset with an arbitrary distribution of data in the full D-dimensional space. In the original
RS-HDMR formulation, the component functions fi1i2...id are obtained as D-d dimensional integrals, which
rapidly become a bottleneck as D increases [5–8]. We previously introduced combinations of HDMR with
neural networks (RS-HDMR-NN) [9–11] and, recently, Gaussian process regressions (RS-HDMR-GPR)
[12, 13] which allow dispensing with integrals and also allow combining terms of any dimensionality, e.g.
one may use

f(x)≈
∑

{i1i2...id}∈{12...D}

fNN/GPRi1i2...id
(xi1 ,xi2 , . . . ,xid) (2)

where the component functions are fitted with NN or GPR one at a time in cycles until convergence to the
known values of the function f (j) = f

(
x(j)

)
at points x(j), j = 1, …,M:
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fk1k2...kd (xk1 ,xk2 , . . . ,xkd) = f(x)−
∑

{i1i2 . . . id} ∈ {12 . . .D}
{i1i2 . . . id} ̸= {k1k2 . . .kd}

a(c) fi1i2...id (xi1 ,xi2 , . . . ,xid) (3)

where a fading parameter a(c) (where c indexes fitting cycles) may be introduced to palliate local minima
[12, 13]. In this way, existing NN or GPR engines can easily be used for component functions, although a
custom code is needed to realize equation (3) [10, 13]. In equation (2), lower order terms of equation (1) are
lumped into d-dimensional terms. This representation is particularly attractive with sparse data; we
previously showed that with low data density, there is a maximum d for which fi1i2...id can be reliably
constructed [9]. Note that data density is always low in sufficiently high-dimensional spaces in any practical
setting, as due to the so-called ‘curse of dimensionality’ adding more data (even if it were possible, which is
often not the case) has little effect on data density in terms of number of data points per dimension [14]. The
representation of equation (2) was previously used to fit functions to data with densities as low as about two
data per degree of freedom or less [12, 15]. Equation (3) does not enforce orthogonality of component
functions but much gains in simplicity.When the terms are built with GPR (RS-HDMR-GPR [12, 13]),
equation (2) allows determining relative importance of different combinations of variables, effectively
extending the automated relevance determination (ARD) capability of plain GPR and allowing for pruning
of HDMR terms [13]; this is important as the number of terms scales combinatorically with D and d.

In equations (2) and (3), the relative amplitudes of terms are subsumed in the definition of fi1i2...id ; in
what follows, it will be convenient to consider them explicitly:

f(x)≈
∑

{i1i2...id}∈{12...D}

A∼
i1i2...id f

∼
i1i2...id (xi1 ,xi2 , . . . ,xid) (4)

where f∼i1i2...id are considered to be in some sense normalized (e.g. to have the maximum value or integral of
one). The amplitudes are fitted with equation (3). The disadvantage of using equation (3) is the need for
repeated fits as well as the need for a separate code implementing the method. Another disadvantage is loss of
ease of computing the variance of the estimate of f(x) (see equation (6)) which needs to be assembled from
variance estimates of all component functions.

In GPR, the expectation values f(x) and variances∆f(x) of function values at any point in space x are
computed as [16]

f(x) = K∗K−1f (5)

∆f(x) = K∗∗ −K∗K−1K∗T (6)

where f is a vector of all (known) f (j) values, and the matrix K and row vector K∗ are computed from
pairwise covariances among the data:

K=


k
(
x(1),x(1)

)
+ δ k(x(1),x(2)

)
k(x(2),x(1)

)
k
(
x(2),x(2)

)
+ δ

· · · k(x(1),x(M)
)

k(x(2),x(M)
)

...
. . .

...
k(x(M),x(1)

)
k(x(M),x(2)

)
· · · k

(
x(M),x(M)

)
+ δ

 (7)

K∗ =
(
k
(
x,x(1)

)
k
(
x,x(2)

)
. . . k

(
x,x(M)

))
, (8)

and K∗∗ = k(x,x). The covariance function k(x(1),x(2)|λ) is the kernel of GPR that depends on
hyperparameters λ (which we omit in the formulas for notational simplicity). The optional δ on the diagonal
has the meaning of the magnitude of Gaussian noise and is a regularization (hyper)parameter; it helps
generalization.

Representation in the form of equations (1) and (2) can also be obtained by GPR kernel design. Even
though GPR is often considered to be a nonlinear machine learning method, at each particular value of λ, it
is equivalent to a regularized linear regression. Equation (5) has the form of a basis expansion,
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f(x) =
M∑

n=1

bn (x) cn (9)

with basis functions bn (x) = k
(
x,x(n)

)
and with coefficients c obtained with least squares, c= K−1f [17].

The covariance function is usually chosen as one of the Matern family of functions [18],

k(x,x ′) = A
21−ν

Γ(ν)

(√
2ν

|x− x ′|
l

)ν

Kν

(√
2ν

|x− x ′|
l

)
(10)

where Γ is the gamma function, and Kν is the modified Bessel function of the second kind. At different
values of ν, this function becomes a squared exponential (ν→∞), a simple exponential (ν = 1/2) and
various other widely used kernels (such as Matern3/2 and Matern5/2 for ν = 3/2 and 5/2, respectively). It is
typically preset by the choice of the kernel, and the length scale l and prefactor A are hyperparameters (i.e.
λ= (l, A)) that can be optimized. The particular value of GPR compared to a linear regression with a generic
basis (which could in principle also be taken in an HDMR form) is the use of the covariance function which
imparts to equations (5) and (6) the meaning of the expectation value and the variance of a Gaussian
distribution of f(x) values [16]. Note that equation (6) as written (and as it usually appears in the literature)
strictly speaking holds when k(x,x) is equal to the variance of the data; alternatively, one can assume that it is
for data normalized to unit variance.

One can express k in the form of equation (1) or (2), e.g. in the case of equation (2),

k(x,x ′) =
∑

{i1i2...id}∈{12...D}

Ai1i2...idki1i2...id (xi1i2...id ,x
′
i1i2...id) (11)

where xi1i2...id = (xi1 ,xi2 , . . . ,xid) and ki1i2...id can be chosen as one of Matern kernels in d dimensions with
amplitudes (A in equation (10)) indicated explicitly assuming maxki1i2...id = ki1i2...id (xi1i2...id ,xi1i2...id) = 1.

Equation (11) has previously been introduced for additive Gaussian processes [19]. Equations (9) and (11)
together immediately give an HDMR-type representation of f(x):

f(x) =
∑

{i1i2...id}∈{12...D}

Ai1i2...id

M∑
n=1

ki1i2...id

(
xi1i2...id ,x

(n)
i1i2...id

)
cn

≡
∑

{i1i2...id}∈{12...D}

Bi1i2...id f
∼
i1i2...id (xi1i2...id) . (12)

Note that elements of c, and thereby the amplitudes Bi1i2...id , depend on products of many Ai1i2...id by virtue
of the minors of the matrix K forming its inverse (the dependence on Ai1i2...id of det(K) need not be
considered as it leads to a common scaling of all HDMR terms). That is, Bi1i2...id ̸= Ai1i2...id , and explicit
dependence of Bi1i2...id on Ai1i2...id is impractically complex. However, the choice of Ai1i2...id is immaterial. One
can even choose the amplitudes of HDMR terms of the kernel randomly. Regardless of the choice of Ai1i2...id ,
Bi1i2...id are the least squares solutions and are in this sense optimal (one can think of any changes introduced
in relative magnitudes of different Ai1i2...id being compensated in equation (12) via c). This is in contrast to
equation (3) where the amplitudes of the component functions depend on the quality of the optimization
and local minima. Equation (11) as written (which is the form we use in the tests below) uses all
combinations of d variables. The approach is obviously not limited to this particular form; a generic HDMR
expansion of the form of equation (1) can also be used for the kernel and will result in a corresponding
HDMR expansion of f(x). Only selected combinations of d ′ ≤ d variables can also be used to decrease the
number of terms [13]. Individual component functions are computable as

fi1i2...id (xi1 ,xi2 , . . . ,xid) = K∗
i1i2...idc (13)

where K∗
i1i2...id is a row vector with elements Ai1i2...idki1i2...id

(
xi1i2...id ,x

(n)
i1i2...id

)
. In particular, the values of the

component functions at the training set are fi1i2...id = Ki1i2...idc and can be used to evaluate the relative
importance of different component functions by computing the variance var(Ki1i2...idc), where the (m,n)

elements of the matrix Ki1i2...id are Ai1i2...idki1i2...id

(
x(m)
i1i2...id

,x(n)i1i2...id

)
.

Rather than using a dedicated code as in the case of equation (3) [13], an HDMR-type kernel of equation
(11) can be used with any existing GPR engine to obtain a HDMR representation of f(x) directly. One simply
needs to define a custom kernel function, which is easily doable in common machine learning libraries such
as Matlab’s Statistics and Machine Learning Toolbox used by us. The use of a single GPR approximation
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instead of equation (3) also makes easy the calculation of the variance of f(x) with equation (6), which is also
then returned by the GPR engine. We caution that equation (6) should not be automatically used as an error
bar; it allows computing the confidence interval on the expectation value of the function computed by GPR
and might not be indicative of the quality of the fit (see notes and examples to this effect in [12, 13]).

2. Results

We compared the performance of an HDMR-type kernel to that of the RS-HDMR-GPR [12, 13] approach.
We fitted the potential energy surfaces (PES) of H2CO and UF6 molecules and the kinetic energy densities
(KEDs) of aluminium, magnesium, and silicon crystals at equilibrium and strained geometries. For the
description of the datasets and information about the applications of these functions, see [20] for H2CO,
[21] for UF6, and [22] for the KED data. We chose these applications, as in them, high fitting accuracy is
required (with errors much smaller than 1% of the data range for the model to be useful at all and with
desirable accuracy of better than 0.01% [23–25]). We have 120 000 data points in six dimensions
(representing molecular bonds and angles) for H2CO with values of potential energy ranging
0–17 000 cm−1, 54 991 data points in 15 dimensions (representing 15 modes of vibration) for UF6 with
values ranging 0–6629 cm−1, and 585 890 data in seven dimensions (representing six terms of the 4th order
gradient expansion of KED [26] and the effective potential [27]) for KED with values ranging 0.0073–0.0398
a.u. (atomic units). The distributions of the data can also be found in the original references. What matters
for the purpose of the present work are not details of these applications but a comparison of GPR with
HDMR-type kernel of equation (11) to RS-HDMR-GPR and plain GPR (obtained when d= D in equation
(11)) using a standard kernel on the same data.

For ki1i2...id (xi1i2...id ,x
′
i1i2...id) of equation (11), we use the squared exponential kernel (i.e.

ki1i2...id (xi1i2...id ,x
′
i1i2...id) = exp

(
|xi1i2...id − x ′

i1i2...id |
2
/2l2

)
). The PES data were normalized to unit variance

before fitting; we therefore use isotropic kernels. The KED data were scaled to [0,1] for the same reason; as
their distributions are extremely uneven (see [22]), we found that scaling is preferred over normalization in
this case. The length parameter l is 5.47 (d = 4–6)–8.17 (d = 1–3) for H2CO, 33.1 for UF6, and 1.22 for KED.
The corresponding δ values are 1× 10−6 (d = 4–6)–1× 10−5 (d = 1–3) for H2CO, 1× 10−5 for UF6, and
5× 10−4 for KED. We set all Ai1i2...id to the same value (1/N, where N= CD

d is the number of HDMR terms
and CD

d is the binomial coefficient). We confirmed that they can be changed randomly without affecting the
quality of the fit, just as the theory suggests. There is no effect of the setting of the relative amplitudes of
component functions in the kernel; however, there is an effect via δ as the effect of δ depends on the overall
magnitude of the kernel. Setting all Ai1i2...id = const is sufficient; there is no need to optimize the magnitudes of
the kernel’s component functions.

The tests were run in Matlab 2021a using fitrgp function with a custom kernel function implementing
equation (11). The code and data can be found in supplementary material (available online at
stacks.iop.org/MLST/3/01LT02/mmedia). In table 1, we compare test set root mean square errors (rmse)
obtained with the kernel of equation (11) to those reported in [12, 13] with RS-HDMR-GPR (using similar
kernels). We use test set sizes (also given in table 1) which are much larger than the training sets to grasp well
the global quality of the approximation. Note that there is variability of rmse values from run to run due to
random selection of training data from the overall data set, which is within about±10% and does not affect
the reported trends (we do not fix the random seed precisely to monitor the effect of this source of
uncertainly and give rmse ranges from ten runs). For all practical purposes, the fit quality is similar to that
achieved with RS-HDMR-GPR [12, 13]. The obtainable error for given hyperparameters with the HDMR
kernel is lower than with RS-HDMR-GPR by construction, as the coefficients are optimal in the least squares
sense. In the case of the KED data, the errors obtained here for d < D are slightly higher than those reported
in [13], as in that work, length parameters were optimized for each component function (see below for tests
with optimized l).

When using an HDMR-type kernel, it is easier to use larger training sets, as a single GPR instance is fitted
once. In [12, 13], a maximum of 3600, 5000, and 5000 points were fitted for H2CO, UF6, and KED,
respectively. Larger sets were not used in [12, 13], in particular, due to the relatively high scaling of cost of
GPR with the number of training data, compounded by the cost of applying equation (3) and wielding
N= CD

d GPR instances. With an HDMR-type kernel, the cost is still higher than that of a conventional
Matern-type kernel due to a higher cost of computing the kernel function which has a larger number of
terms (the number of terms is also given in table 1 for each d) but is easier manageable. We also provide
results with much larger training sets and larger d in the case of UF6, where HDMR has more than a
thousand terms. As expected, even lower global errors are obtainable for higher d with more training data,

4

https://stacks.iop.org/MLST/3/01LT02/mmedia


Mach. Learn.: Sci. Technol. 3 (2022) 01LT02

Ta
bl
e
1.
Te
st
se
t
rm

se
er
ro
rs
ob

ta
in
ed

w
it
h
R
S-
H
D
M
R
-G

P
R
(e
qu

at
io
n
(3
))
of

di
ff
er
en
t
or
de
rs
d
in

[1
2,
13
]
fo
r
th
e
po

te
n
ti
al
en
er
gy

su
rf
ac
es
of

H
2
C
O
an
d
U
F 6

an
d
fo
r
th
e
ki
n
et
ic
en
er
gy

de
n
si
ti
es
of

A
l,
M
g,
an
d
Si
as
w
el
la
s
th
os
e

ob
ta
in
ed

w
it
h
an

H
D
M
R
-t
yp
e
ke
rn
el
in

th
is
w
or
k
fo
r
di
ff
er
en
t
n
u
m
be
rs
of

tr
ai
n
in
g
da
ta
po

in
ts
M
.T

h
e
M

in
th
e
ca
se
of

R
S-
H
D
M
R
-G

P
R
re
su
lt
s
ar
e
th
e
la
rg
es
t
am

on
g
th
os
e
u
se
d
in

[1
2,
13
].
Te
st
se
t
si
ze
s
u
se
d
in

th
is
w
or
k
ar
e
10
0
00
0

fo
r
H

2
C
O
P
E
S,
40

00
0
fo
r
U
F 6

P
E
S,
an
d
40
0
00
0
fo
r
th
e
K
E
D
s.
N
is
th
e
n
u
m
be
r
of

H
D
M
R
co
m
po

n
en
t
fu
n
ct
io
n
s
at
ea
ch

d.
T
h
e
n
u
m
be
rs
ar
e
in

cm
−
1
fo
r
th
e
P
E
Ss

an
d
in

a.
u
.f
or

K
E
D
.T

h
e
ra
n
ge
s
of

rm
se
fr
om

te
n
ru
n
s
ar
e
gi
ve
n

(w
h
er
e
av
ai
la
bl
e)
re
fl
ec
ti
n
g
th
e
ra
n
do

m
n
at
u
re
of

th
e
tr
ai
n
in
g
da
ta
se
le
ct
io
n
fr
om

th
e
ov
er
al
ld
at
as
et
.

H
2
C
O
P
E
S
(D

=
6)

U
F 6

P
E
S
(D

=
15
)

K
E
D
(D

=
7)
,i
n
u
n
it
s
of

×
10

−
4

d
N

R
ef
er
en
ce

[1
2]

E
qu

at
io
n
(1
1)

E
qu

at
io
n
(1
1)

N
R
ef
er
en
ce

[1
2]

E
qu

at
io
n
(1
1)

E
qu

at
io
n
(1
1)

N
R
ef
er
en
ce

[1
3]

a
E
qu

at
io
n
(1
1)

E
qu

at
io
n
(1
1)

M
36
00

36
00

10
00
0

50
00

50
00

10
00
0

50
00

50
00

10
00
0

d
=

D
1

1.
58
–1
.7
9

0.
99
–1
.2
3

0.
37
–0
.5
6

1
42
.2

36
.0
–3
9.
2

25
.5
–2
6.
2

1
2.
53

2.
34
–6
.4
7

2.
21
–2
.4
4

1
6

12
77
–1
28
0

12
74
–1
28
0

12
71
–1
27
6

15
23
4.
6

23
4–
23
6

23
4–
23
5

7
9.
10

4.
84
–4
.8
6

4.
82
–4
.8
5

2
15

29
5–
30
0

28
5–
28
9

27
6–
27
9

10
5

16
8.
1

16
5–
16
8

16
1–
16
3

21
4.
46

2.
70
–4
.3
2

2.
61
–2
.9
7

3
20

10
.7
0–
11
.2
5

8.
25
–1
0.
6

8.
81
–9
.9
8

45
5

65
.6

60
.5
–6
1.
7

55
.5
–5
6.
3

35
2.
72

2.
57
–3
.3
3

2.
47
–2
.6
8

4
15

1.
36
–1
.8
3

0.
74
–1
.0
5

0.
32
–0
.4
5

13
65

58
.6
–5
9.
5

51
.8
–5
2.
5

35
2.
72

2.
48
–2
.6
9

2.
38
–2
.8
7

5
6

1.
23
–1
.7
8

0.
94
–1
.1
6

0.
34
–0
.4
0

21
1.
73

2.
45
–3
.2
4

2.
32
–2
.6
5

6
7

1.
73

2.
38
–3
.4
5

2.
26
–2
.4
1

… 11
13
65

36
.1
–3
7.
3

25
.5
–2
5.
9

12
45
5

36
.1
–3
7.
0

25
.3
–2
5.
8

13
10
5

35
.7
–3
7.
1

25
.5
–2
5.
9

14
15

35
.8
–3
8.
2

25
.5
–2
6.
1

5



Mach. Learn.: Sci. Technol. 3 (2022) 01LT02

Figure 1. Representative examples of correlation plots and correlation coefficients between exact values and HDMR kernel based
GPR predictions for selected combinations of d and D (for the case of 10 000 training points).

while lower-dimensional terms are well-defined with few data [9] (i.e. the test rmse is not improved by
adding more data and is limited by the dimensionality of HDMR terms).

These results with the HDMR kernel highlight the advantages of the HDMR representation, namely, that
with finite training data, one can obtain a similar or better global rmse compared to a conventional
(full-dimensional) GPR with d < D. We show representative examples of correlation plots between exact
values and HDMR kernel based GPR predictions for select d < D in figure 1, to visually highlight the high
accuracy of the regressions performed here.

We mentioned above that the HDMR-type kernel allows estimating variances of component functions
and therefore, similar to RS-HDMR-GPR, relative importance of different variables or combinations thereof.
Taking the KED data as an example, we list the variances of the seven component functions at d = 1 obtained
at fixed and optimized (to maximum likelihood) length parameters in table 2. Similar to what was found
with RS-HDMR-GPR in [13], variables x1,x2,x3,x7 are seen as most important, and their length parameters
are relatively small. The importance of x7 (which is the product of the electron density and Kohn–Sham
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Table 2. Relative variances of the seven component functions of the HDMR obtained with the kernel of equation (11) for d= 1 when
fitting 10 000 KED data with fixed and optimized length parameters. The values are in a.u.

l= 1.22 Optimized l

var(Kic)× 104 var(Kic)× 104 lopt

0.00960 0.00897 0.297
0.00088 0.00082 0.099
1.03933 1.06364 0.135
0.00024 0.00001 6.058
0.00004 0.00000 21.93
0.00042 0.00046 0.693
1.73715 1.75074 0.131

Train/test rmse×104

4.82/4.83 4.23/4.32

effective potential) in capturing most of the variance of the KED is also consistent with the result of [22]. The
dwindling of the variance of f4 (x4) and f5 (x5) corresponds to their optimized length parameters becoming
large, indicating their low relevance, in a way similar to ARD.

3. Conclusions

We showed that a kernel type based on HDMR for GPR allows easily constructing a representation of a
multivariate function as a sum of lower-dimensional terms. A similar kernel representation was previously
introduced for additive Gaussian processes [19]; here, we show that it allows obtaining accurate models in
applications notorious for high accuracy requirements—PES and KED fitting - and allows building HDMR
representations of multivariate functions which are similar to the recently proposed RS-HDMR-GPR scheme
[12, 13] while being much easier to use. One only needs to define a custom kernel for use with existing GPR
libraries; no dedicated software is needed. There is no need to optimize the magnitudes of the HDMR terms
in the kernel, and the magnitudes of the HDMR term of the final function representation are optimal in the
least squares sense. The relative importance of different HDMR component functions and corresponding
variables can also be easily evaluated.
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