
*Corresponding author: E-mail: Fairoz.kareem@dpu.edu.krd;

Asian Journal of Research in Computer Science

10(3): 13-32, 2021; Article no.AJRCOS.70376
ISSN: 2581-8260

SQL Injection Attacks Prevention System
Technology: Review

Fairoz Q. Kareem1*, Siddeeq Y. Ameen1, Azar Abid Salih1,

Dindar Mikaeel Ahmed1, Shakir Fattah Kak1, Hajar Maseeh Yasin1,
Ibrahim Mahmood Ibrahim1, Awder Mohammed Ahmed2, Zryan Najat Rashid2

and Naaman Omar1

1Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq.
2
Sulaimani Polytechnic University, Sulaimani, Kurdistan Region, Iraq.

Authors’ contributions

This work was carried out in collaboration among all authors.. All authors read and approved the final

manuscript.

Article Information

DOI: 10.9734/AJRCOS/2021/v10i330242
Editor(s):

(1) Dr. Dariusz Jacek Jakóbczak, Koszalin University of Technology, Poland.
Reviewers:

(1) Muralidharan J, KPR Institute of Engineering and Technology, India.
(2) Singaraju Suguna Mallika , CVR College of Engineering, India.

(3) G.S.N.Murthy, Aditya College of Engineering, India.
(4) Saroj Kumar Dash, BPUT,India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/70376

Received 01 May 2021
Accepted 06 July 2021

Published 06 July 2021

ABSTRACT

The vulnerabilities in most web applications enable hackers to gain access to confidential and
private information. Structured query injection poses a significant threat to web applications and is
one of the most common and widely used information theft mechanisms. Where hackers benefit
from errors in the design of systems or existing gaps by not filtering the user's input for some
special characters and symbols contained within the structural query sentences or the quality of the
information is not checked, whether it is text or numerical, which causes unpredictability of the
outcome of its implementation. In this paper, we review PHP techniques and other techniques for
protecting SQL from the injection, methods for detecting SQL attacks, types of SQL injection,
causes of SQL injection via getting and Post, and prevention technology for SQL vulnerabilities.

Keywords: SQL injection; PHP; database security.

Review Article

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

14

1. INTRODUCTION

Website applications play an essential part in
daily life in today's technology-driven world.
People use websites for various purposes,
including internet shopping, banking, and
chatting with friends. Often, websites use
databases to store user data on the backend [1].
Since sensitive information, including passwords,
credit card numbers, and social security
numbers, is kept in such files, malicious hackers
often attack them [2-4].

According to an analysis of numerous hacking
events, when operating system security improves
and security protection software and hardware
solutions become more widespread, network
attacks directly triggered by operating system
vulnerabilities decrease year after year, while the
usage rate of WEB application system
vulnerabilities increases. Because of its easy
syntax and high development performance, PHP
has become the language of choice for
developing all types of portal websites and Web
application programs. LAMP architecture (Linux
+ Apache + MySQL + PHP) is a PHP language
development environment with fast speed, high
compatibility, free open source, and other
benefits [5]. Based on the current traffic levels,
about 70% of the LAMP architecture relies on the
present-day network conditions [6]. Since the
PHP early design process is over-efficient and
transparent, some necessary security
specifications in the programming language are
not strictly restricted [7]. Adding delicate data is
needed. It is counterproductive because the
programmer lacks their security knowledge while
the machine functions are jeopardized [8].

Some sections of the system face no constraints
in their operational protection [9]. So many data
are vulnerable, resulting in the fact that the
system can present significant security risks [10].
Especially prominent among them are SQL
injection vulnerabilities. For the first time since
1999, the SQL injection has been in people's
minds and was ten years old. While a
comprehensive preventive plan is now in place,
its capacity cannot be underestimated [11]. One
of the most dangerous loopholes is SQL injection
[12]. OWASP Top 10 for 2010, OWASP Top 10
for 2013, and OWASP Top 10 for 2017, SQL
injection was ranked as the top challenge to Web
application systems three times [13,14].

SQL injection vulnerabilities compromise the
protection of individual websites and the

entire database infrastructure and network
system that hosts related applications [15].
It is easily capable of causing large sections of
web pages to hang, viruses to spread,
privacy breaches, remote control of servers, and,
in extreme cases, network paralysis [16].
Also, due to its simplicity, SQL injection
vulnerabilities are often used as a stepping stone
for network attacks, which have the objective of
penetrating the target's network step by step
[17]. While hackers may also use their expertise
to infiltrate only an application or a single server,
they want the ability to get full access to the
network or get complete internal information
[18].

One of the common ways for hackers to attempt
databases is this SQL injection attack. More and
more programmers use this mode to create apps
in the development of the B/S mode application
[19,20]. Given the unequal degree of
programmers' experience, a significant
percentage of programmers do not assess user
input data's authenticity when developing code,
which poses concerns for the application's
security [21,22]. Users can submit a database
query code and obtain data based on the
program outcomes they wish to know [23]. One
of the methods of database security assault is
the SQL injection assault. The database security
protection technology can successfully secure it
[24,25].

It is not unusual nowadays to note media
coverage of any serious violation of the
cybersecurity of a significant firm [25,26]. Many
of these infringements are attributable to
software or system flaws [27]. Once a thorough
study was carried out of these vulnerabilities, the
development issues revealed a high number of
these flaws [28,29]. More specifically, the
vulnerabilities were caused by either developers
or the design process. Injection attacks are a
specific vulnerability triggered by developers or
by an imperfect design process [30]. SQL
injection attacks were mainly attributable to most
of the cybersecurity violations committed by the
organization. This kind of attack can harm a
company or company [31,32]. These effects
might include monetary loss, the disclosure of
private corporate data, consumer exposure, a
drop in stock, or a mix of the four [33,34]. In
interactive online applications, SQL injection
attacks are relatively frequent. They can not only
be detected readily and reasonably
easy to mitigate by SQL injection assaults
[35,36].

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

15

A relatively common online vulnerability is
Structured Query Language Injection Attack
(SQLIA) [37,38]. To obtain data access or make
unauthorized modifications to the data, the
attacker adds malicious structured query
language (SQLs) code to the input area of a web
form [39,40]. Successful malicious SQL injection
leads to significant cash losses, reputation
losses, compliance and regulation violations in
the targeted business [41,42]. Several research
projects have been undertaken to identify and
prevent SQL injections. However, a single
advanced tool for identifying and mitigating SQL
injection threats remains unusual [43,44].

SQL Injection may be defined as allowing
hackers to use a web app to perform a malicious
SQL query on the database server to access
sensitive information or database [45,46]. This
web-based vulnerability enables the attacker to
spot the identity, delete the system's data, and
modify the database records [47,48]. SQL
injection's main effects include loss of
Confidentiality, authentication as an attacker
without providing the original user name and
password to access the network successfully by
manipulating the SQL command logically, loss of
authorization as an attacker leaves complete
system information, and lack of integrity as
hacker gets access to the database [49,50].

To adapt to changing business requirements,
information systems typically migrate to the Web;
however, these technologies are sometimes
vulnerable to an enormous variety of assaults
with their security weaknesses [51,52]. According
to Mitre Corporation, SQL Injection Threats
(SQLIA) are among the most prevalent types of
safety attacks these systems face [53,54].

The internet network has now become one of the
primary everyday requirements of humans in the
era of continuously changing and growing
information technology [55,56]. Web applications
such as online banking, web-based e-mails,
instant communications networking are aimed at
attackers [57,58]. Their main aim is to obtain
critical user information and use it for their
purposes. The SQL injective attacks are one way
to target online apps and web-based information
systems [59,60].

SQL Injection Assault is one of the most frequent
and most damaging ways of a hacker attack.
SQL injector attacks and prevention are essential
and challenging subjects to teach in information
system protection in our school [61,62]. SQLi-

labs have different vulnerabilities to teaching help
software [63]. The instructor may perform in-
class SQL injection assaults via the aid of this
program, helping pupils understand the SQL
injection attack and preventive concept [64,65].

A primary security concern is posed by a SQL
injection attack (SQLIA) in Web applications
backed by a database [66]. This exploit allows
attackers to easily access the application's
underlying database and the potentially sensitive
information contained in the databases [67,68]. A
hacker can access database content by carefully
crafted input, which otherwise cannot. Usually,
this is done by modifying SQL statements used
in online applications [69]. Researchers have
investigated SQLIA detection and prevention
thoroughly and created numerous approaches
because of the safety of web applications
[70,71].

As the internet is used to provide online services,
web security risks are also drastically grown
every day [72,73]. SQL injection is one of the
most significant and dangerous vulnerabilities in
online applications [74]. SQL injection attack
occurred when a part of a malicious SQL query
was inserted in the legal query statement via an
invalidated user entry [75,76]. This will lead to
the execution of such instructions and SQL
injection [77]. The database management
system's Confidentiality, integrity, and availability
of information in the database have interfered
with successful SQL injection attacks [78,79].

With the progress of the Web, the majority of
people transact on the Web, for example,
through data research, banking, shopping,
management, surveillance and management of
dam and commercial exchanges, etc [80]. Web
apps have adapted to the daily life of many
people. Web applications' dangers have
extended to include enormous expansion [81]. At
the moment, the more vulnerabilities are reduced
every day, the greater the number of threats [82].
The SQLIA is one of the most significant hazards
of online applications risks [83]. Structured
queries are an injection attack [84]—the lack of
SQL web-based injection attack validation flaws
[85]. SQLIA is a malignancy that involves the
abuse of data-driven applications through
negated SQL declaration [86]. This vulnerability
allows an attacker to communicate the
applications' interaction with backend databases
by complying with the designated input [87].
Therefore, access to the database can be
obtained by the insertion, modification, or

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

16

deletion without valid authorization of essential
information [88].

In this paper, we discussed the SQL injection
prevention methods in depth: in section 1, we
introduced a general concept of SQL injection. In
section 2, we explained in-depth the database
security threats and SQL injection (attacks and
types), in section 3, the Prevention technology
for SQL vulnerabilities was discussed, in section
4, we explained the related work on SQL
injection with PHP and different techniques, in
section 5 we discussed the SQL injection
prevention with PHP and we compared with
other authors. Finally, the conclusion expounds
and summarizes the attack principle and attack
implementation SQL injection attack Principles
and Preventive Techniques for PHP Sites.

2. DATABASE THREATS

Database security is described as a collection of
measures, policies, and processes for ensuring
data confidentiality, integrity, and availability and
combating potential device attacks (threats) from
both insiders and outsiders, both malicious and
unintentional [89]. On the other hand, data
security is described as using hardware or
software to protect information from unwanted
access, modification, or destruction [90]. In a
database world, protection is achieved by
defining risks and selecting appropriate policies
and mechanisms, which contribute to what the
security system is supposed to do and how the
security system can meet the security objectives
[91]. It also entails providing security system
assurance, which relates to how well the security
system satisfies the defense specifications and
performs its functions [89].

A relational database is a set of data points with
specified relationships that can be accessed
easily [92]. The Structured Query Language
(SQL) is a relational database's standard user
and application program interface (API) (SQL).

2.1 Structured Query Language (SQL)
Attacks

SQL (Structured Query Language) is a text-
based language for interacting with database
servers. SQL commands such as (INSERT,
RETRIEVE, UPDATE, and DELETE) are utilized
to operate on the Database. The programmer
uses this command to manipulate data in the
database server. SQL Injection is a strategy for
injecting SQL commands into a web server that

runs in a backend database by exploiting an
invalidated input weakness.

According to the concept, a SQL Injection attack
is hazardous because the attacker who
successfully enters the server database will
access the data already present in the database.
Improper manipulation of data by an attacker can
cause harm to the owner of an injected website.
The leakage of data and information is fatal.
Such data may be misused by irresponsible
parties [93].

According to the definition, a SQL Injection attack
is hazardous since an attacker who has
successfully infiltrated the system database can
change the data already present. An attacker's
improper data modification can affect the owner
of an injected website. Data and information
leakage may be disastrous. Irresponsible
persons may misuse this information.

2.2 SQL Injections Attacks

SQL injection is a type of code injection attack in
which the user's data is placed into the SQL
query, causing a portion of the user's input to be
interpreted as SQL code [9]. This is a technique
to use web pages as an input to insert SQL
queries or orders. It happens when the data
supplied by the user is not checked correctly and
explicitly used in the SQL questionnaire. An
attacker can directly access the database by
using these vulnerabilities. There are two key
SQL injection strategies, according to Sharma
(2005). (Access through login page and access
through URL). The first method is most easy
under which login types are circumvented as
passwords are used for user authentication. The
attackers will do this by: 'or' state, 'getting'
clause, various queries, and expanded stored
procedure. An intruder may execute the second
technique: manipulate the question string in a
URL and use the statements 'SELECT' or
UNION. This type of vulnerability indicated a
serious.

Suppose the formula returns [1 = 1] or an empty
row in the user's table, a user was detected. The
first [‘] quote ends the string, and the characters
[--] indicate the start of a SQL comment; anything
after that is ignored. The database's
interpretation of the problem is now a tautology
that is still fulfilled. As a result, an attacker can
get unlimited access to sensitive information on
the server by bypassing all authentication
modules. SQL injection can damage any

database, regardless of software or web
application. This attack can be used to steal
sensitive information, circumvent authentication
protocols, alter databases, and run arbitrary
code. In some instances, the attacks were
directed at the database server itself

2.3 SQL Injection Attacks Can Take
Several Types

2.3.1 properly filtered escape character

This is a kind of injection attack where the user is
not bound to prevent them from writing
something they do not want to write and is
therefore passed on to a SQL statement. If this
results in the end-user handling the SQL
statements, this can only lead to complications
for the user. A notable example of this issue is a
code fragment that illustrates this vulnerability:

 Statement: (“SELECT * FROM users
WHERE name =’” + 17username + “;”)

Fig

Select * from users where username = ‘ “&username “ ‘ and password =’
If the username and password as provided by the user are used , the query to be submitted to
the data base takes the form
Select * from users where username=’guest’ and password=’guestpass’
If the user were to enter [; or 1=1
take the form: select *from users where username = ‘ ’ or 1=1

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.

17

database, regardless of software or web
be used to steal

sensitive information, circumvent authentication
protocols, alter databases, and run arbitrary
code. In some instances, the attacks were
directed at the database server itself [94].

s Can Take

2.3.1 properly filtered escape character

This is a kind of injection attack where the user is
not bound to prevent them from writing
something they do not want to write and is
therefore passed on to a SQL statement. If this

user handling the SQL
statements, this can only lead to complications

example of this issue is a
code fragment that illustrates this vulnerability:

Statement: (“SELECT * FROM users
username + “;”)

 The general aim of this code is to pull out a
single user from its list, but if the user’s
name is compromised, the action can go
off in an unexpected direction.

2.3.2 Failure to handle sort

There are several attack patterns of this kind. If
an attacker applies simple types in a
nonconfirmed field, this attack may be made
Until submitting it to the database (whether it is
numeric or not). As another case:

Statement: (“SELECT * FROM data WHERE id =
+ a_variable +”;;)

The Author expects a variable to be a number
connected to the “id” field, as can be seen by this
sentence. But if the end-user selects a string, it
circumvents the need for escapes. For instance,
set a variable to 1; user of the DROP tab to
remove the user table from the database and to
the SQL statement: (SELECT * DATA WHERE
ID = 1); user of the DROP Tab;

Fig. 1. the process of SQL injection

Select * from users where username = ‘ “&username “ ‘ and password =’ “&userpassword& “ ‘ ”
If the username and password as provided by the user are used , the query to be submitted to

Select * from users where username=’guest’ and password=’guestpass’
If the user were to enter [; or 1=1--] and [] instead of [guest] and [guestpass], the query would
take the form: select *from users where username = ‘ ’ or 1=1-‘ and password=’ ’

; Article no.AJRCOS.70376

The general aim of this code is to pull out a
single user from its list, but if the user’s
name is compromised, the action can go
off in an unexpected direction.

There are several attack patterns of this kind. If
applies simple types in a

nonconfirmed field, this attack may be made [95].
Until submitting it to the database (whether it is

ent: (“SELECT * FROM data WHERE id =

The Author expects a variable to be a number
connected to the “id” field, as can be seen by this

user selects a string, it
circumvents the need for escapes. For instance,

t a variable to 1; user of the DROP tab to
from the database and to

the SQL statement: (SELECT * DATA WHERE

“&userpassword& “ ‘ ”
If the username and password as provided by the user are used , the query to be submitted to

] instead of [guest] and [guestpass], the query would

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

18

2.3.3 Database server vulnerabilities

Often the database system program has bugs
like the MYSQL server real _escape_ string ()
feature vulnerability. An attacker will use this flaw
to launch a powerful SQL injection attack using
incorrect unified character encoding [96].

2.3.4 Blind SQL injection attack

A so-called blind SQL injection. An application is
vulnerable to attack, but its impact is not
apparent to the attacker. A SQL injection is put
into the SQL becomes a "blind" one. The
information could be expanded without being
displayed but using valid statements, logical
processes inserted into the system will lead to
various developed data outcomes [97]. New
bytes must be added for any byte added to the
database when a unique string is tested. When
you know where the flaw is located, you can use
Absinthe to search for the corresponding target
information.

2.3.5 Conditional response

It's worth noting that a SQL injection causes the
database to calculate the value of a logical
argument on a typical application screen:

 SELECT book title FROM booklist WHERE
book Id

 ='00k14cd'AND 1 = 1 This leads to a
standard face, while the statement
SELECT book title FROM booklist WHERE
book Id

 ='00k14cd'AND 1 = 2)

 The outcome can be different when a page
is vulnerable to SQL injection attacks. This
single injection would demonstrate that
blind SQL injection is feasible, allowing an
attacker to create claims that judge
authenticity based on the content of a field
in another table.

2.3.6 Conditional errors

If the WHERE statement is correct, the database
is forced to judge a message that causes an
error, resulting in a SQL error. Consider the
following example:
(SELECT 1/0 FROM users WHERE
username='Ralph'. If Ralph exists, dividing by
zero will lead to errors.)

2.3.7 Time delay

A kind of blind SQL injection involves delaying
the execution of a statement for a predetermined

length of time. Under this logic, the SQL engine's
implementation is likely to take a long time to
execute or wait for a long queue to be
completed. You may calculate the amount of
time needed to load a page to decide whether or
not a test statement is accurate [98].

2.4 SQL Injection Causes in PHP Code

A web application often expects to receive input
from a user and a human to respond. The user
must provide data to the server as part of the
interaction procedure [99]. After receiving data
from the user, the web application queries the
database system to show the client conditionally.
Users typically provide data to the server through
the GET, POST, and Cookie methods. The GET
technique involves directly writing the data to be
submitted in the URL, and it is frequently used to
transmit less data while browsing. The POST
method is commonly used as a form submission
and is frequently utilized when users need input
data, which is usually a considerable amount of
data. Cookies are small pieces of data that an
online application saves in the user's browser
buffer. They're typically used to store user IDs or
track their browsing habits [100,101].

In Table 1, the three data transfer methods are
described in terms of their characteristics and
danger levels. The fundamental reason for SQL
injection vulnerability is that the web application
system does not immediately identify the
transmitted data as it passes it. In the course of
writing the code, the programmer uses the code
directly. The information is combined with SQL
commands before being sent to the database
system for processing. If an attacker includes
more SQL commands in the provided data, they
will all be executed simultaneously, resulting in
SQL injection.

2.5 SQL Injection in the GET Mode

Since the data supplied by the GET method is
written in the URL, it is straightforward to update
and pass the data, and the data to be transferred
is merely adjusted in the URL [102]. For
example, the GET method is used to immediately
transmit the employee number to the web
application system during the regular use of the
employee number to query employee
information. Fig. 1 shows the URL and the SQL
command data. Since the query's keyword is
exposed explicitly in the URL, an attacker can
find the passed variable name and data format
and change the URL to add a SQL command to

the injector's URL. For instance, inserting the
"OR empId=10002" injection code can inquire
and leak information from other employees.
2 shows the URL and SQL command details
[103].

An attacker may receive information from all
employees in extreme instances. For instance,
the attack principle is the same as
injections by using (OR embed > 0,) Scattered
SQL controls must be updated to (SELECT *
FROM tab employee when EmpId=10001 OR
embed >0), and the original injection information
must be substantially altered. By examining the

Table 1. Methods of web applications

Fig. 2. The employee number usually is used to obtai

Fig. 3. The addition of information about injectio

Techniques Characteristics
Post A large amount of data must be delivered, and

it must be submitted via form forms or the
AJAX post technique.

Get Less data is passed by directly writing data in
the URL.

Cookie Sorted in the browser cache of the user's end,
the data is large and sensitive

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.

19

the injector's URL. For instance, inserting the
"OR empId=10002" injection code can inquire
and leak information from other employees. Fig.

QL command details

An attacker may receive information from all
employees in extreme instances. For instance,
the attack principle is the same as Fig. 3 in
injections by using (OR embed > 0,) Scattered

must be updated to (SELECT *
FROM tab employee when EmpId=10001 OR
embed >0), and the original injection information
must be substantially altered. By examining the

SQL command, they noticed that it was added to
the SQL command logically or operational
embed information equal to or higher than 10001
or empId is taken from the tb employee
The SQL statement is compatible with the
implementation results (SELECT * FROM TB
employee where the empId >0) since 10001 is
more significant than 0. The integer n
be higher than 0 when the employee number is
programmed in the employee number of the
database. All the information of the employees
may be obtained and the batch information
leaked.

Methods of web applications receive data from users

. 2. The employee number usually is used to obtain information from the employee

. 3. The addition of information about injections leads to a lack of knowledge

Characteristics Degree of Risk
A large amount of data must be delivered, and
it must be submitted via form forms or the
AJAX post technique.

High

Less data is passed by directly writing data in High

Sorted in the browser cache of the user's end,
the data is large and sensitive

moderate

; Article no.AJRCOS.70376

SQL command, they noticed that it was added to
the SQL command logically or operational

bed information equal to or higher than 10001
or empId is taken from the tb employee table.
The SQL statement is compatible with the
implementation results (SELECT * FROM TB
employee where the empId >0) since 10001 is
more significant than 0. The integer number must
be higher than 0 when the employee number is
programmed in the employee number of the
database. All the information of the employees

d the batch information

n information from the employee

to a lack of knowledge

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

20

2.6 SQL Injection in the POST Mode

The POST method's SQL injection vulnerabilities
are the same as the GET method. After the user
receives it, the web application system's data
doesn't require security detection. The
splicing with the SQL command is immediately
the result. The POST method requires the Form,
Delivery method, compared with the GET
method Risk degree characteristics GET [104]—
the transfer of data typed directly into the URL,
less high data POST. Submitted using the form
or POST method by AJAX giant cookie, a large
amount of data to be transmitted. The data is
vast and sensitive stored in the user end
browser cache—moderate SQL Attack
Principles of SQL Injection Site Prevention
Technologies.

Furthermore, an annotation utilizing SQL
commands, often prevalent upon user login, is
one of the primary POST injection methods. For
example, single-line comments ("--" and "#")
commonly use a MySQL database. Once
mention in the SQL command occurs, the
contents of the statement will not be used as
comments. If the attackers enter a login account
and login code, an annotation can be used to
eliminate the authentication portion and log in
with the login account [105].

3. PREVENTION TECHNOLOGY FOR
SQL VULNERABILITIES

The previous description of SQL injection
vulnerabilities and standard methodology
determined that the same features apply to all
SQL injection locations. Programmer’s simply
paying attention to the application function while
designing application programs, have little regard
for application security, and even have no basic
sense of security protection [106,107]. Given the
causes mentioned above, it is vital to present
focused preventative measures and preventative

strategies using summaries of the reasons for
SQL injection vulnerabilities.

3.1 User Data Sensitive Keyword Filtering

The user receives the user data to the Web
application system in PHP language ($_GET,
$_POST) and other global variables. All user
data received on the server-side are assumed to
be "unsafe" and cannot be used straight away
only after the sensitive keywords are filtered out.
Mainly SQL instructions and special characters
are typical filter keywords. Table 3 shows the
particular filter content.

3.2 Using the Apache Server's Rewrite
Module, prevent SQL Injection
Attacks

To obtain search engine optimization (SEO) and
concealed development technology and use it for
the precaution against SQL injection, people
commonly utilize the rewrite module on an
Apache server. In truth, the Rewrite is a SQL
injection prevention module that is relatively
straightforward to use. In the settings Apache
HTTPd.conf, it must be activated when using the
Rewrite module. The replacement rules are
configured in two ways [5]. The first is to set the
virtual host when adding a replacement rule, and
the second is to build an htaccess file to replace
the rules file in the site directory [108]. The first
benefit is that Apache automatically loads rule
information when starting up, running efficiently,
and replace the rules specified in the Apache
Configuration File. However, after changing the
replacement rules, you need to restart Apache,
which causes business disruption. The second is
a more flexible procedure. The replacement rules
and the Apache setup file are separated. They
come into effect immediately following the
addition or modification of the rules. You need
not restart Apache, although there is a low
running efficiency [109].

Table 2. Prevent SQL injection filtering keywords

Content of filter The purpose of the filter
Insert Prevent the use of additional SQL commands to insert data
Select Prevent subquests for injections
Delete Prevention of further SQL command update removal
Update Prevention of further SQL command update removal
Drop Prevent further command up SQL
Truncate Prevent further emptying of the SQL command
Special symbols to include features such as (>, <, =, ', space, etc.) to block any more logic
Logical Operators (AND, OR, NOT) PREVENT the inclusion of additional query criteria

Fig. 4. an injection process that begins with user input, carries performed on the website, and

concludes with a

3.3 Using Various Techniques
Detection the Vulnerabilities
Database Such as LDAP
(Lightweight Directory Access
Protocol)

What is LDAP Injection and how to exploit it:
LDAP or the so-called Lightweight Directory
Access Protocol is one of the networking
protocols, which is mainly used in the process of
verifying the identity of the user in addition to his
powers and the way to access any services
within the network such as printers, shared files,
and others. What can be done in LDAP?
Through this protocol, many things can be done,
such as:

Search found items (users, sources, groups,
.....etc) [110,111].

It was comparing or checking whether a
particular element has an input that contains a
specific value or not.

Add a new item.
Delete an existing item.
Update an existing item.
Among the services or servers that deal with this
protocol:
Apache Directory Server
Red Hat Directory Server
OpenLDAP
Novell eDirectory
Active Directory Microsoft
LDAP Query Language:

The LDAP protocol uses a straightforward query
language. For example, if they want to query all

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.

21

. 4. an injection process that begins with user input, carries performed on the website, and
concludes with a username and password interface

Using Various Techniques for
Vulnerabilities of the

as LDAP Injection
(Lightweight Directory Access

What is LDAP Injection and how to exploit it:
called Lightweight Directory

the networking
protocols, which is mainly used in the process of
verifying the identity of the user in addition to his
powers and the way to access any services
within the network such as printers, shared files,
and others. What can be done in LDAP?

h this protocol, many things can be done,

Search found items (users, sources, groups,

It was comparing or checking whether a
particular element has an input that contains a

Among the services or servers that deal with this

The LDAP protocol uses a straightforward query
language. For example, if they want to query all

the existing elements (user, group, printer, etc.)
that contain the word Mohammad in the given
name field, which is the first name, they write the
following sentence: (givenName=mohammad)

In the previous example, the query clause
contained one condition: the first name, so if they
wanted to put more than one condition?

They put each condition separately and then put
the condition type before these sentences,
saying that the condition can be AND or OR. An
example of this is the following:
(&(givenName=mohammad)(l=amman))

So that (l=amman) is to search in the property of
the region Location and
(givenName=mohammad) is to search in the first
name and the sign & is to apply the two
conditions together (and), in other words, all
elements that have these two properties should
be returned together.

If they write *amm ->, it means to search for the
one ending in amm.

And if they write amm* — < it means to search
for ones that start with amm.

And if they write *amm* — < it means to search
for the one that contains amm.

If they write * by themselves ->, it means to
return all elements that contain this property.

(givenName=*amm)
(givenName=amm*)
(givenName=*amm*)
(givenName=*)

; Article no.AJRCOS.70376

. 4. an injection process that begins with user input, carries performed on the website, and

, group, printer, etc.)
that contain the word Mohammad in the given
name field, which is the first name, they write the
following sentence: (givenName=mohammad).

In the previous example, the query clause
contained one condition: the first name, so if they
wanted to put more than one condition?

They put each condition separately and then put
the condition type before these sentences,
saying that the condition can be AND or OR. An
example of this is the following:
(&(givenName=mohammad)(l=amman)).

(l=amman) is to search in the property of
the region Location and
(givenName=mohammad) is to search in the first
name and the sign & is to apply the two
conditions together (and), in other words, all
elements that have these two properties should

>, it means to search for the

< it means to search

< it means to search

>, it means to
return all elements that contain this property.

Now that we have learned about this protocol
and how to query through it and its uses, it is
time to learn how and how to exploit the LDAP
Injection vulnerability.

Suppose there is a login form on a site, and this
form verifies the login data for users by checking
within the LDAP. The query sentence will be as
follows:

(&(USER=$Uname)(PASSWORD=$Pwd))

This sentence means checking both the user
name and the password in LDAP. In this case,
there are several ways to check whether this
form is infected or not:

First method:

When entering the symbol * inside the username
or password box, or both, the query sentence
becomes as follows:

(&(USER=myUserName)(PASSWORD=*)) or
(&(USER=*)(PASSWORD=myPassword)) or
(&(USER=*)(PASSWORD=*))

In all of the previous cases, the query statement
will return data because the condition is proper,
and therefore they will bypass the entry form.

Second method:

If they enter in the UserName box the following
value, for example:

Fig. 5. flowchart of LDAP Directory Tree

OU=OrganizationUnitName, UID=Userid)

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.

22

Now that we have learned about this protocol
and how to query through it and its uses, it is

and how to exploit the LDAP

Suppose there is a login form on a site, and this
form verifies the login data for users by checking
within the LDAP. The query sentence will be as

(&(USER=$Uname)(PASSWORD=$Pwd))

ce means checking both the user
name and the password in LDAP. In this case,
there are several ways to check whether this

When entering the symbol * inside the username
or password box, or both, the query sentence

(&(USER=myUserName)(PASSWORD=*)) or
(&(USER=*)(PASSWORD=myPassword)) or

In all of the previous cases, the query statement
will return data because the condition is proper,

entry form.

If they enter in the UserName box the following

AHMAD)(USER=ALI))

And they are sure that the users AHMED and ALI
are present in the LDAP, but they don't know the
password's value. The query statement will l
like this:

(&(USER=
AHMAD)(USER=ALI)))(PASSWORD=*))

And since there is no between the first part of the
sentence and (&(USER= AHMAD)(USER=ALI)))

And the second part is (PASSWORD=*))

Either & or | This will cause the first part of the
sentence to be executed and the second part to
be ignored, which leads to the statement
returning a valid value because they knew that
the users AHMAD and ALI already existed in
LDAP...

Or the user name box can be injected with the
following value if they already know
from the system users so that the result of the
query statement is correct:

AHMAD)(&))

As for the injection of the password box, it is rare,
because in most cases, a password HASH is
done before it is sent to LDAP to be checked so
that it is afraid of the type of HASH used from
one server to another, some of which use MD5
and some of which use SHA and so on.

5. flowchart of LDAP Directory Tree Where (DC= domain component
OU=OrganizationUnitName, UID=Userid)

; Article no.AJRCOS.70376

And they are sure that the users AHMED and ALI
are present in the LDAP, but they don't know the
password's value. The query statement will look

AHMAD)(USER=ALI)))(PASSWORD=*))

And since there is no between the first part of the
sentence and (&(USER= AHMAD)(USER=ALI)))

And the second part is (PASSWORD=*))

Either & or | This will cause the first part of the
executed and the second part to

be ignored, which leads to the statement
returning a valid value because they knew that
the users AHMAD and ALI already existed in

Or the user name box can be injected with the
following value if they already know a user name
from the system users so that the result of the

As for the injection of the password box, it is rare,
because in most cases, a password HASH is
done before it is sent to LDAP to be checked so

afraid of the type of HASH used from
one server to another, some of which use MD5

some of which use SHA and so on.

Where (DC= domain component,

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

23

How to protect the application from LDAP
Injection?

Any LDAP web developer can protect their
application from LDAP injection by doing a
server-level validation of all input from browsers
to the application so that only letters and
numbers are allowed in.

4. RELATED WORK

Many researchers have discussed the subject of
SQL injection, and in different ways, we will
discuss some researchers and their techniques
in this section as follows:

4.1 Prevention SQL Injection using PHP
System

PHP is the most popular scripting language for
web development. It is free, open-source, and
server-side (the code is executed on the server).
The following is the PHP code of the application
that contains an SQL Injection vulnerability of
some researchers.

The authors in [112] Present a way to prevent
assaults by SQL on e-commerce websites. This
is done by using PHP Data Object (PDO) and
Prepared Statement to connect to the database,
insert, update, select and enter Web forms. The
approach employed in these documents is Agile
Methodology, which follows planning,
requirements analysis, design, coding, testing,
and documentation in parallel during the
production process phase. A penetration test
was performed at many websites, one utilizing
PHP data objects and prepared statements, and
the other using a standard PHP script to see
whether or not they are injectable. The
perforated penetration demonstrated that SQL
injection attacks were not visible on the PHP
Data Object and Prepared Statement website. At
the same time, other websites produced with
standard PHP connectivity could be viewed and
injected into SQL Injection. SQL injection attacks
employing the PHP Data Object and Prepared
Statement have blocked the system.

Other Author in [113] The SQL Injection
Vulnerability Auto Black Box Test Proposes
(SQL). This automates an SQLIV evaluation in
SQLIA. Recent research has also demonstrated
that existing SQLIVS has to be improved to
reduce manual vulnerability inspection costs and
the risk of being attacked because of inaccurate
false-negative and false-positive results. This

research aims to enhance the effectiveness of
SQLI VS by suggesting in its development an
object-orientated approach to decrease and
contribute to the incidence of false-positive and
false-negative results and enable potential
researchers to improve a proposed scanner. As
compared to the previous investigations, the
results of the experimental study reveal a
substantial improvement. Likewise, the analysis
demonstrated that the suggested scanner could
analyze the page response attacked by four
different strategies.

In [114] “Neutralized SQL Injection web-based
application attacks by server-side code
changes," it offers a way to increase web safety
by detecting Web-based SQL Injection assaults
through server-based modifying code to limit
vulnerability and alleviate fraudulent and
damaging activities. This solution has been
deployed on a simple website with a database to
record users with a controlled administrator. The
server utilized is local, and PHP was the
background server code. MySQL was used for
the front end. The scripting language on the PHP
server-side was being used for code
modification. 'PDO prepares' a parameter
preparation to run. With its ability to block all
kinds of SQL assaults, the solution provided
proved efficient. Acunetix was used to test the
code's vulnerability, and it was implemented with
a simple database on a simple website. To
validate the model, some prominent SQL
injection attack tools and security data sets have
been employed. The acquired results are
promising, with a high precision rate for SQL
injection detection.

Also, the Author used the PHP system in [103].
They introduced a hybrid technique in PHP, the
popular server-side programming language, for
preventing SQL assaults. This strategy is more
effectively used without extensive string analyzer
logic to prevent an attack of SQL injected into a
dynamic Web content context. Initially, the
application is built in safe mode to construct the
query model for each hotspot. Dynamically
produced queries are validated in the production
environment. The results and analysis suggest
the recommended solution prevent common SQL
injection vulnerabilities is simple and effective.

In [5], researchers Highlighted carrying out a
PHP language-based safety check. This tool may
uncover SQL and cross-site scripting
vulnerabilities to Cross-Site Scripting (XSS) by
constructing a tree-like query structure before

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

24

passing it to the parser. It helps extract invalid or
a weak point easier by identifying sink points for
the data flow information through target
application sources. The presence of the sink-
point is validated when a language-dependent
parser compares the structure of the resulting
tree query with queries. It leads to the
classification of the vulnerability class according
to their patterns when the sink point is found. The
program may also analyze incoming user queries
or ask for an applied tree-like structure using
taught attack patterns. It allows the device to
statistically assess the questions and decide how
they might be fixed in the list of susceptible
questions. Many Whitebox safety control
instruments that may provide somesthetic or
syntactic elements of a legitimate query may be
expanded into a security assessment language
but are typical with significant false alarms.

In [115] Proposes a vulnerability assessment
technique to address the issue of SQL injection
attacks. A pattern matching technique is used to
categorize input and function variables into a
design with attack vector properties. Then, a
code analyzer is used to verify incorrect queries
with sensory inputs. Tools to apply this method
employ an innovative rule model to decide on
possibly susceptible scripts for SQLI and XSS
attacks. The experimental assessment reveals
consistent results for PHP test boards and minor
false alarms. A unique code is used to train data
sets and test datasets of attack patterns to
eliminate false alarms. The training dataset is
divided into five log partitions of the repository
and is used to test each test dataset using SQLI
assault patterns and vectors.

In [116], a little method based on an EQA
encoding concerning traffic metrics such as

request and response time and message length
is described. EQA conceals SQL related to the
database and avoids some common SQL
injection kinds (Tautology, Piggybacked, and
Comment). Using MySQL and PHP environment
and Wireshark platform, EQA is developed and
tested. The findings show that the proposal has
high safety performance and reduces HTTP
demand, response time, and message length.

The Author in [117] Developed a new framework
for developing a web-based application based on
the Model View Controller's architectural design
and Ajax technology (MVC). Ajax technology with
its built-in library is implemented in the
framework. Their findings revealed that the new
PHP web application framework might assist
users in constructing dynamic and real-time web
applications as a web application development
tool.

4.2 Prevention SQL Injection Using
Various Techniques

In [118], Using multiple assumptions, the
researchers proposed a software component
engineering technique for discovering
vulnerabilities in SQL injection attacks.
Researchers developed a method to decrease
false warnings, and this work aims to address
flaws in currently available SQL injection
vulnerability scanners. For valid and erroneous
query requests, the established SQL detection
algorithm is based on grammatical, structural
patterns. The test results show that the SQL
detection is highly accurate and false-positive
when a valid query request contains a phrase
(e.g., Orton, Fernando, Hernando, Armando,
etc.) that is considered suspicious in the
grammatical tree model built.

Table 3. Prevention SQL injection using PHP system

Techniques Advantages Disadvantages
PHP Data Object,
Prepared
Statement

the PHP Data Object and Prepared
Statement could block the system.

SQL IDs, phrases, and keywords
cannot be used as arguments in
prepared statements.

PHP, MySQL,
Acunetix

using these three techniques has a
lot of advantages one of them is has
a high precision rate for SQL injection
detection.

MySQL disadvantages are not very
efficient in handling the same number
of databases.

PHP, MVC, Ajax The PHP and MVC techniques have
a positive result for the security of
web technology

But the Ajax technique disadvantages
is not worked on all browsers, and
security is more diminutive.

PHP, EQ The advantages of EQA, it has high
safety performance, reduce HTTP
demand, response time, and the
length of the message

EQA does not measure routine
performance and has a high workload
for (NRL).

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

25

Also, the authors in [119] The three most often
used content management systems have
compared SQLi vulnerabilities utilizing Nikto, a
vulnerability scanner called SQLMAP for
penetration testing. This was implemented on the
default pages of WordPress, Drupal, and Joomla
on the LAMP server (Localhost). Results
demonstrated that all content management
systems were not susceptible to assaults via
SQLi, but provided alerts on other potential flaws.

The Author in [54] Applied a Query Tokenization
to express each SQL query, use the Word2vec
Skip-gram model to create word embedding for
each query, and then train the SVM classification
system using eigenvector to identify fraudulent
requests. Tokenization Experimental results
indicate the efficiency and low overhead
performance of all forms of SQL assaults, in
particular tautological assaults.

In [113], They suggested a concept of SQL
injection attack detection by comparing the
language and the syntax tree. They tried to
overcome formidable obstacles and many forms
of SQL injection vulnerabilities not before
uncovered. The grammar correspondence is
based on rules-based pattern mining, collecting
and analyzing signature patterns in the SQLIA
mode stored. The methodology also employs
attack patterns, signature and feature sets that
have been learned as SQL injections, and
trained data set evaluated in different techniques
for machine learning. For testing and evaluating
prototypes in two testbed situations, SVM, Naive
Bayesian, Random Forest, ID3, and K-means
are employed. Experimental findings reveal that
BTestSet1dataset results in all five algorithms
more accurately than GTestSet1 in ATTAR. On
the other side, by having more SQLIA
assaults, the flawed alarm of the model can be
enhanced.

The researchers in [120] Proposed A-Gap
Weighted String Subsection Algorithm for
categorizing genuine and malicious queries
based on the extraction properties of a string
match. The methodology proposed utilizes
trained and tested examples to detect and halt
the SQL injections tautology type dynamically.
The model test cases for current or future
tautological SQL injection attacks are prepared
employing attack extraction features using the
support vector machine (SVM). The investigation
reveals that the suggested solution can block
existing SQL injection tautology attacks and
launch new SQL assaults with comparable

assault patterns and payloads with the current
one.

In [121] Suggested a free safe SQL injection
technique to identify and prevent SQL assaults.
Java and algorithm implementation outlines the
way they follow SQL Injection Prevention
Procedures. Comparison of similar assault types
with the characteristics Lastly, the assessment
shows that the algorithm detects SQLIAs with
high efficiency.

On the other hand, the authors in [122] The new
DIAVA Traffic-based SQLIA Vulnerability
Analysis and Detection Framework has been
launched, allowing tenants proactively to provide
alerts quickly. DIVA can detect successful
SQLIAs among all suspects correctly by
evaluating the two-way network traffic of SQL
operations and using their suggested regular
multi-level model for expression. Meanwhile, the
severity of such SQLIAs may be promptly
assessed by DIAVA based on its GPU-based
dictionary attack analysis engine as well as the
vulnerabilities of the related disclosed data.
Research shows that DIAVA conducts advanced
WAFs for SQLA detection from the point of view
of precision and recall and allows the
assessment of leaked data causing SQL injection
in real-time.

The authors in [123] suggest that the suggested
system was evaluated using an SQlMapproject
attack tool utilizing two safety measures, namely
the use of an intrusion detection system as a
sensor to identify an attack occurring on SQL
and the use of a web-based firewall (Mod
secure) as a security system to stop assaults.
SQLMapproject is used before and after
protecting web applications. The findings suggest
that the safety system presented works properly
and can successfully safeguard the web-based
database system, high performance, and
efficiency.

In [124], the researchers proposed a new
technique for accurate SQL injection detection
based on neural networks. Their approach is
genuine, effective, and practical since they start
by obtaining Internet Service Provider (ISP) user
URL access log data and ensure that it is true,
accurate, and valuable. For data analysis, they
perform a statistical study on regular data and
SQL injection data. Based on the findings shown
in the chart, plan to use eight different
characteristics and train an MLP model. The
model retains an extremely high accuracy of

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

26

Table 4. Prevention SQL injection using various techniques

Techniques Advantages Disadvantages
Nikto,
SQLMAP

all content management systems were not
susceptible to assaults via SQLi but provided
alerts on other potential flaws.

The most common disadvantages
of SQLMAP are the pilferage of
data.

SQL injection
with (SVM)

launch new SQL assaults with comparable
assault patterns and payloads with the
current one.

SVM methods do not make
suitable with the large number of
data set.

SQL injection
with neural
network

its advantages are the accuracy of neural
networks for detecting SQL injection is
superior to the relevant machine learning
algorithms.

These algorithms often demand far
more data than the classic
machine learning techniques.

SQLA,
DIAVA, SQL
injection

DIAVA not only conducts advanced WAFs for
SQLA detection from the point of view of
precision and recall but also allows the
assessment of leaked data causing SQL
injection in real-time

The more significant false-negative
rate of this input process due to
DIAVA: a Traffic-based Framework
for SQL Injection Attacks Detection

around 99 percent. Meanwhile, they assess and
compare various machine learning algorithms
(LSTM, for example). The findings show that the
technique provides better outcomes than these
related machine learning techniques.

5. ASSESSMENT AND RECOMMENDA-

TION

PHP remains the most popular server-side
language for websites and web applications.
According to the latest data from w3techs, it is
used by 79% of websites whose server-side
language is known. Therefore, secure PHP
programming and configuration are of critical
importance. SQL Injection vulnerabilities have
been on the OWASP Top 10 list since its
beginning. They may appear in all languages,
including the Web’s two most popular languages,
PHP and Java. SQL Injection vulnerabilities pose
a serious threat to sensitive data and web
application security in general. Attackers may
use malicious code to get complete control of the
system. In this study, we can compare PHP
results with other techniques, such as the
authors in [36] used a PHP system to prevent
SQL injection attacks. The results and analysis
show the approach is simple and effective to
avoid common SQL injection vulnerabilities. Also,
we can see the authors in [115] used PHP Data
Object (PDO) to preventing SQL injection attacks
on e-commerce websites. The penetration test
showed that the system was entirely controlled
from SQL injection attacks using PHP Data
Object and Prepared Statement. Using various
techniques for detection SQL injection, the
authors in [53] Proposed A-Gap Weighted String
Subsection Algorithm to categorize genuine and

malicious queries based on the extraction
properties of a string match. The methodology
proposed utilizes trained and tested examples to
detect and halt the SQL injections tautology type
dynamically. The model test cases for current or
future tautological SQL injection attacks are
prepared to utilize attack extraction features
using the support vector machine (SVM). The
investigation reveals that the suggested solution
can block existing SQL injection tautology
attacks and launch new SQL assaults with
comparable assault patterns and payloads with
the current one.

6. CONCLUSION

There are many dangerous functions in PHP that
can cause high-risk vulnerabilities in PHP web
applications if web application developers misuse
them. PHP Web application developers must do
stringent filtering of user input so that most
exposures can be avoided. In general, the more
convenient it is for developers, the more security
risks it may mean. This paper expounds and
summarizes the attack principle and attack
implementation SQL injection attack Principles
and Preventive Techniques for PHP Sites.
Process of SQL injection and demonstrates the
SQL injection vulnerability exploiting method by
manual injection. Because the attack principle
has certain universality, the Web application
systems developed in other languages can also
use the practices described in this article for
security testing. With the continuous
improvement of SQL injection technology, as
long as the Web is still used in programs or
source code, there are still vulnerabilities and
hidden dangers. Based on the summary of the

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

27

SQL injection, this article proposes a variety of
suggestions for preventing SQL injection during
the development of Web application systems.

DISCLAIMER

The products used for this research are
commonly and predominantly use products in our
area of research and country. There is absolutely
no conflict of interest between the authors and
producers of the products because we do not
intend to use these products as an avenue for
any litigation but for the advancement of
knowledge. Also, the research was not funded by
the producing company rather it was funded by
personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing
interests exist.

REFERENCES

1. Antunes N, Vieira M. "Comparing the
effectiveness of penetration testing and
static code analysis on the detection of sql
injection vulnerabilities in web services," in
2009 15th IEEE Pacific Rim International
Symposium on Dependable Computing.
2009;301-306.

2. Halfond WG, Viegas J, Orso A. "A
classification of SQL-injection attacks and
countermeasures," in Proceedings of the
IEEE international symposium on secure
software engineering. 2006;13-15.

3. Patel N, Mohammed F, Soni S. SQL
injection attacks: techniques and protection
mechanisms. International Journal on
Computer Science and Engineering.
2011;3:199-203.

4. Ntagwabira L, Kang SL. "Use of query
tokenization to detect and prevent SQL
injection attacks," in 2010 3rd International
Conference on Computer Science and
Information Technology. 2010;438-440.

5. Zhang H, Zhang X. "SQL injection attack
principles and preventive techniques for
PHP site," in Proceedings of the 2nd
International Conference on Computer
Science and Application Engineering.
2018;1-9.

6. Stobart S. Vassileiou M. "MySQL database
and PHPMy admin installation," in PHP
and MySQL Manual, ed.

7. Abdullah RM, Ameen SY, Ahmed DM, Kak
SF, Yasin HM, Ibrahim IM, et al.

Paralinguistic speech processing: An
overview. Asian Journal of Research in
Computer Science. 2021;34-46.

8. Ibrahim IM, Ameen SY, Yasin HM, Omar
N, Kak SF, Rashid ZN, et al. Web server
performance improvement using dynamic
load balancing techniques: A review. Asian
Journal of Research in Computer Science.
2021;47-62.

9. Zebari IM, Zeebaree SR, Yasin HM. "Real
time video streaming from multi-source
using client-server for video distribution," in
2019 4th Scientific International
Conference Najaf (SICN). 2019;109-114.

10. Ahmed DM, Ameen SY, Omar N, Kak SF,
Rashid ZN, Yasin HM, et al. A state of art
for survey of combined iris and fingerprint
recognition systems. Asian Journal of
Research in Computer Science. 2021;18-
33.

11. Maulud DH, Ameen SY, Omar N, Kak SF,
Rashid ZN, Yasin HM, et al. Review on
natural language processing based on
different techniques. Asian Journal of
Research in Computer Science. 2021;1-
17.

12. Thiyab RM, Ali M, Basil F. "The impact of
SQL injection attacks on the security of
databases," in Proceedings of the 6th
International Conference of Computing &
Informatics. 2017;323-331.

13. Kaur N, Kaur P. SQL injection–anatomy
and risk mitigation. Cover Story What, Why
and How of Software Security 7 Cover
Story Developing Secure Software.
2014;9:27.

14. Yasin HM, Zeebaree SR, Zebari IM.
"Arduino based automatic irrigation
system: Monitoring and SMS controlling,"
in 2019 4th Scientific International
Conference Najaf (SICN). 2019;
109-114.

15. Salih AA, Ameen SY, Zeebaree SR,
Sadeeq MA, Kak SF, Omar N, et al. Deep
learning approaches for intrusion
detection. Asian Journal of Research in
Computer Science. 2021;50-64.

16. Kindy DA, Pathan ASK. "A survey on SQL
injection: Vulnerabilities, attacks, and
prevention techniques," in 2011 IEEE 15th
international symposium on consumer
electronics (ISCE). 2011;468-471.

17. Al Janaby AO, Al-Omary A, Ameen SY, Al-
Rizzo H. Tracking and controlling high-
speed vehicles via CQI in LTE-A systems.
International Journal of Computing and
Digital Systems. 2020;9:1109-1119.

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

28

18. Mohammed K, Ameen S. Performance
investigation of distributed orthogonal
space-time block coding based on relay
selection in wireless cooperative systems;
2019.

19. Fawzi LM, Alqarawi SM, Ameen SY,
Dawood SA. Two levels alert verification
technique for smart oil pipeline surveillance
system (SOPSS). International Journal of
Computing and Digital Systems.
2019;8:115-124.

20. Zeebaree S, Yasin HM. Arduino based
remote controlling for home: Power saving,
security and protection. International
Journal of Scientific & Engineering
Research. 2014;5:266-272.

21. Al-Sultan MR, Ameen SY, Abduallah WM.
Real time implementation of stegofirewall
system. International Journal of Computing
and Digital Systems. 2019;8:498-504.

22. Zeebaree S, Zebari I. Multilevel
client/server peer-to-peer video
broadcasting system. International Journal
of Scientific & Engineering Research.
2014;5:260-265.

23. Al Janaby AO, Al-Omary A, Ameen SY, Al-
Rizzo HM. "Tracking high-speed users
using SNR-CQI mapping in LTE-A
networks," in 2018 International
Conference on Innovation and Intelligence
for Informatics, Computing, and
Technologies (3ICT). 2018;1-7.

24. Hasan BMS, Ameen SY, Hasan OMS.
Image authentication based on
watermarking approach. Asian Journal of
Research in Computer Science. 2021;34-
51.

25. Taher KI, Saeed RH, Ibrahim RK, Rashid
ZN, Haji LM, Omar N, et al. Efficiency of
semantic web implementation on cloud
computing: A review. Qubahan Academic
Journal. 2021;1:1-9.

26. Zebari S, Yaseen NO. Effects of parallel
processing implementation on balanced
load-division depending on distributed
memory systems. J. Univ. Anbar Pure Sci.
2011;5:50-56.

27. Othman A, Ameen SY, Al-Rizzo H.
Dynamic switching of scheduling algorithm
for. International Journal of Computing and
Network Technology. 2018;6,.

28. Hamed ZA, Ahmed IM, Ameen SY.
Protecting windows OS against local
threats without using antivirus. Relation.
2020;29:64-70.

29. Kareem FQ, Zeebaree SR, Dino HI,
Sadeeq MA, Rashid ZN, Hasan DA, et al.

A survey of optical fiber communications:
challenges and processing time influences.
Asian Journal of Research in Computer
Science. 2021;48-58.

30. Ameen SY, Ali ALSH. A comparative study
for new aspects to quantum key
distribution. Journal of Engineering and
Sustainable Development. 2018;11:45-57.

31. Fawzi LM, Ameen SY, Alqaraawi SM,
Dawwd SA. Embedded real-time video
surveillance system based on multi-sensor
and visual tracking. Appl. Math. Infor. Sci.
2018;12:345-359.

32. Omer MA, Zeebaree SR, Sadeeq MA,
Salim BW, Mohsin SX, Rashid ZN, et al.
Efficiency of malware detection in android
system: A survey. Asian Journal of
Research in Computer Science. 2021;59-
69.

33. Ali ZA, Ameen SY. Detection and
prevention cyber-attacks for smart
buildings via private cloud environment.
International Journal of Computing and
Network Technology. 2018;6:27-33.

34. Rashid ZN, Zeebaree S, Sengur A. Novel
remote parallel processing code-breaker
system via cloud computing. ed: TRKU;
2020.

35. Haji SH, Ameen SY. Attack and Anomaly
detection in iot networks using machine
learning techniques: A review. Asian
Journal of Research in Computer Science.
2021;30-46.

36. Rashid ZN, Zeebaree SR, Shengul A.
"Design and analysis of proposed remote
controlling distributed parallel computing
system over the cloud," in 2019
International Conference on Advanced
Science and Engineering (ICOASE).
2019;118-123.

37. Mohammed BA, Ameen SY. A comparison
of adaptive equalization techniques for
MIMO-OFDM system; 2017.

38. Rashid ZN, Zebari SR, Sharif KH, Jacksi
K. "Distributed cloud computing and
distributed parallel computing: A review," in
2018 International Conference on
Advanced Science and Engineering
(ICOASE). 2018;167-172.

39. Fawzi LM, Ameen SY, Dawwd SA,
Alqaraawi SM. Comparative study of ad-
hoc routing protocol for oil and gas
pipelines surveillance systems.
International Journal of Computing and
Network Technology. 2016;4.

40. Rashid ZN, Sharif KH, Zeebaree S.
Client/Servers clustering effects on CPU

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

29

execution-time, CPU usage and CPU Idle
depending on activities of Parallel-
Processing-Technique operations. Int. J.
Sci. Technol. Res. 2018;7:106-111.

41. Farhan FY, Ameen SY. "Improved hybrid
variable and fixed step size least mean
square adaptive filter algorithm with
application to time varying system
identification," in 2015 10th System of
Systems Engineering Conference (SoSE).
2015;94-98.

42. Jijo BT, Zeebaree SR, Zebari RR, Sadeeq
MA, Sallow AB, Mohsin S, et al. A
comprehensive survey of 5G mm-wave
technology design challenges. Asian
Journal of Research in Computer Science.
2021;1-20.

43. Izadeen GY, Ameen SY. Smart android
graphical password strategy: A review.
Asian Journal of Research in Computer
Science. 2021;59-69.

44. Sadeeq MA, Zeebaree S. Energy
management for internet of things via
distributed systems. Journal of Applied
Science and Technology Trends.
2021;2:59-71.

45. Othman A, Ameen SY, Al-Rizzo H. A new
channel quality indicator mapping scheme
for high mobility applications in LTE
systems. Journal of Modeling and
Simulation of Antennas and Propagation.
2015;1:38-43.

46. Maulud DH, Zeebaree SR, Jacksi K,
Sadeeq M.AM, Sharif KH. State of art for
semantic analysis of natural language
processing. Qubahan Academic Journal.
2021;1:21-28.

47. Othman A, Othman SY, Al-Omary A, Al-
Rizzo H. Comparative performanceof
subcarrier schedulers in uplink LTE-A
under high users' mobility. International
Journal of Computing and Digital Systems.
2015;4.

48. Sadeeq MM, Abdulkareem NM, Zeebaree
SR, Ahmed DM, Sami AS, Zebari RR. IoT
and cloud computing issues, challenges
and opportunities: A review. Qubahan
Academic Journal. 2021;1:1-7.

49. Haji SH, Zeebaree SR, Saeed RH, Ameen
SY, Shukur HM, Omar N, et al.
Comparison of software defined
networking with traditional networking.
Asian Journal of Research in Computer
Science. 2021;1-18.

50. Shukur H, Zeebaree SR, Ahmed AJ,
Zebari RR, Ahmed O, Tahir BSA, et al. A
state of art survey for concurrent

computation and clustering of parallel
computing for distributed systems. Journal
of Applied Science and Technology
Trends. 2020;1:148-154.

51. Zeebaree S, Ameen S, Sadeeq M. Social
media networks security threats, risks and
recommendation: A case study in the
kurdistan region. International Journal of
Innovation, Creativity and Change.
2020;13:349-365.

52. Jacksi K, Ibrahim RK, Zeebaree SR,
Zebari RR, Sadeeq MA. "Clustering
documents based on semantic similarity
using HAC and K-mean algorithms," in
2020 International Conference on
Advanced Science and Engineering
(ICOASE). 2020;205-210.

53. Hassan RJ, Zeebaree SR, Ameen SY, Kak
SF, Sadeeq MA, Ageed ZS, et al. State of
art survey for iot effects on smart city
technology: challenges, opportunities, and
solutions. Asian Journal of Research in
Computer Science. 2021;32-48.

54. Sadeeq MA, Abdulazeez AM. "Neural
networks architectures design, and
applications: A review," in 2020
International Conference on Advanced
Science and Engineering (ICOASE).
2020;199-204.

55. Othman A, Ameen SY, Al-Rizzo H. An
energy-efficient MIMO-based 4G LTE-A
adaptive modulation and coding scheme
for high mobility scenarios. International
Journal of Computing and Network
Technology. 2015;3.

56. Sulaiman MA, Sadeeq M, Abdulraheem
AS, Abdulla AI. Analyzation study for
gamification examination fields. Technol.
Rep. Kansai Univ. 2020;62:2319-2328.

57. Ameen SY. Advanced encryption standard
(AES) enhancement using artificial neural
networks. Int J of Scientific & Engineering
Research. 2014;5.

58. Sadeeq M, Abdulla AI, Abdulraheem AS,
Ageed ZS. Impact of electronic commerce
on enterprise business. Technol. Rep.
Kansai Univ. 2020;62:2365-2378.

59. Yasin HM, Zeebaree SR, Sadeeq MA,
Ameen SY, Ibrahim IM, Zebari RR, et al.
IoT and ICT based smart water
management, monitoring and controlling
system: A review. Asian Journal of
Research in Computer Science. 2021;42-
56.

60. Alzakholi O, Shukur H, Zebari R, Abas S,
Sadeeq M. Comparison among cloud
technologies and cloud performance.

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

30

Journal of Applied Science and
Technology Trends. 2020;1:40-47.

61. Dino HI, Zeebaree S, Salih AA, Zebari RR,
Ageed ZS, Shukur HM, et al. Impact of
process execution and physical memory-
spaces on OS performance. Technology
Reports of Kansai University.
2020;62:2391-2401.

62. Ageed Z, Mahmood MR, Sadeeq M,
Abdulrazzaq MB, Dino H. Cloud computing
resources impacts on heavy-load parallel
processing approaches. IOSR Journal of
Computer Engineering (IOSR-JCE).
2020;22:30-41.

63. Sallow A, Zeebaree S, Zebari R, Mahmood
M, Abdulrazzaq M, Sadeeq M. Vaccine
tracker. SMS reminder system: Design and
implementation; 2020.

64. Abdullah SMSA, Ameen SYA, Sadeeq MA,
Zeebaree S. Multimodal emotion
recognition using deep learning. Journal of
Applied Science and Technology Trends.
2021;2:52-58.

65. Sadeeq MA, Zeebaree SR, Qashi R,
Ahmed SH, Jacksi K. "Internet of Things
security: A survey," in 2018 International
Conference on Advanced Science and
Engineering (ICOASE). 2018;162-166.

66. Salih AA, Zeebaree S, Abdulraheem AS,
Zebari RR, Sadeeq M, Ahmed OM.
Evolution of mobile wireless
communication to 5G revolution.
Technology Reports of Kansai University.
2020;62:2139-2151.

67. Abdulraheem AS, Salih AA, Abdulla AI,
Sadeeq M, Salim N, Abdullah H, et al.
Home automation system based on IoT;
2020.

68. Abdulazeez AM, Zeebaree SR, Sadeeq
MA. Design and implementation of
electronic student affairs system.
Academic Journal of Nawroz University.
2018;7:66-73.

69. Abdulla AI, Abdulraheem AS, Salih AA,
Sadeeq M, Ahmed AJ, Ferzor BM, et al.
Internet of things and smart home security.
Technol. Rep. Kansai Univ. 2020;62:2465-
2476.

70. Aziz ZAA, Ameen SYA. Air pollution
monitoring using wireless sensor networks.
Journal of Information Technology and
Informatics. 2021;1:20-25.

71. Sallow AB, Sadeeq M, Zebari RR,
Abdulrazzaq MB, Mahmood MR, Shukur
HM, et al. An investigation for mobile
malware behavioral and detection
techniques based on android platform.

IOSR Journal of Computer Engineering
(IOSR-JCE). 2020;22:14-20.

72. Shukur H, Zeebaree S, Zebari R,
Zeebaree D, Ahmed O, Salih A. Cloud
computing virtualization of resources
allocation for distributed systems. Journal
of Applied Science and Technology
Trends. 2020;1:98-105.

73. Dino HI, Zeebaree SR, Hasan DA,
Abdulrazzaq MB, Haji LM, Shukur HM.
"COVID-19 diagnosis systems based on
deep convolutional neural networks
techniques: A review," in 2020
International Conference on Advanced
Science and Engineering (ICOASE).
2020;184-189.

74. Abdulqadir HR, Zeebaree SR, Shukur HM,
Sadeeq MM, Salim BW, Salih AA, et al. A
study of moving from cloud computing to
fog computing. Qubahan Academic
Journal. 2021;1:60-70.

75. Ageed ZS, Zeebaree SR, Sadeeq MA,
Abdulrazzaq MB, Salim BW, Salih AA, et
al. A state of art survey for intelligent
energy monitoring systems. Asian Journal
of Research in Computer Science.
2021;46-61.

76. Mohammed SM, Jacksi K, Zeebaree SR.
"Glove Word Embedding and DBSCAN
algorithms for Semantic Document
Clustering," in 2020 International
Conference on Advanced Science and
Engineering (ICOASE). 2020;1-6.

77. Ageed ZS, Zeebaree SR, Sadeeq MM,
Kak SF, Rashid ZN, Salih AA, et al. A
survey of data mining implementation in
smart city applications. Qubahan
Academic Journal. 2021;1:91-99.

78. Amanuel SVA, Ameen SYA. Device-to-
device communication for 5G security: A
review. Journal of Information Technology
and Informatics. 2021;1:26-31.

79. Zebari RR, Zeebaree SR, Sallow AB,
Shukur HM, Ahmad OM, Jacksi K.
"Distributed denial of service attack
mitigation using high availability proxy and
network load balancing," in 2020
International Conference on Advanced
Science and Engineering (ICOASE).
2020;174-179.

80. Yahia HS, Zeebaree SR, Sadeeq MA,
Salim NO, Kak SF, Adel AZ, et al.
Comprehensive survey for cloud
computing based nature-inspired
algorithms optimization scheduling. Asian
Journal of Research in Computer
Science.2021;1-16.

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

31

81. Sharif KH, Ameen SY. "A review of
security awareness approaches with
special emphasis on gamification," in 2020
International Conference on Advanced
Science and Engineering (ICOASE).
2020;151-156.

82. Ismael HR, Ameen SY, Kak SF, Yasin HM,
Ibrahim IM, Ahmed AM, et al. Reliable
communications for vehicular networks.
Asian Journal of Research in Computer
Science. 2021;33-49.

83. Ageed ZS, Zeebaree SR, Sadeeq MM,
Kak SF, Yahia HS, Mahmood MR, et al.
Comprehensive survey of big data mining
approaches in cloud systems. Qubahan
Academic Journal. 2021;1:29-38.

84. Khalid LF, Ameen SY. Secure Iot
integration in daily lives: A review. Journal
of Information Technology and Informatics.
2021;1:6-12.

85. Abdulrahman LM, Zeebaree SR, Kak SF,
Sadeeq MA, Adel AZ, Salim BW, et al. A
state of art for smart gateways issues and
modification. Asian Journal of Research in
Computer Science. 2021;1-13.

86. Yazdeen AA, Zeebaree SR, Sadeeq MM,
Kak SF, Ahmed OM, Zebari RR. FPGA
implementations for data encryption and
decryption via concurrent and parallel
computation: A review. Qubahan
Academic Journal. 2021;1:8-16.

87. Malallah H, Zeebaree SR, Zebari RR,
Sadeeq MA, Ageed ZS, Ibrahim IM, et al.
A comprehensive study of kernel (issues
and concepts) in different operating
systems. Asian Journal of Research in
Computer Science. 2021;16-31.

88. Abdullah DM, Ameen SY. Enhanced
Mobile Broadband (EMBB): A review.
Journal of Information Technology and
Informatics. 2021;1:13-19.

89. Asmawi A, Sidek ZM, Razak S. "System
architecture for SQL injection and insider
misuse detection system," in IEEE
Conference; 2008.

90. Asmawi A, Sidek ZM, Abd Razak S.
"System architecture for SQL injection and
insider misuse detection system for
DBMS," in 2008 International Symposium
on Information Technology. 2008;1-6.

91. Olson IM, Abrams MD. Computer access
control policy choices. Computers &
Security. 1990;9:699-714.

92. Ibrahim IM. Task scheduling algorithms in
cloud computing: A review. Turkish Journal
of Computer and Mathematics Education
(TURCOMAT). 2021;12:1041-1053.

93. Caesarano AR, Riadi I. Network forensics
for detecting SQL injection attacks using
NIST method. Int. J. Cyber-Security Digit.
Forensics. 2018;7:436-443.

94. Nasser A, Daher R. Detecting and
preventing SQL injection attacks.

95. Wright JL, Larsen JW, McQueen M.
"Estimating software vulnerabilities: A case
study based on the misclassification of
bugs in MySQL server," in 2013
International Conference on Availability,
Reliability and Security. 2013;72-81.

96. Muscat I. Web vulnerabilities: identifying
patterns and remedies. Network Security.
2016;5-10.

97. Wang Y, Guo WP, Chen CH. Research on
SQL injection attacks and guard method in
web project [J]. Computer Engineering and
Design. 2010;5.

98. Nagpal B, Chauhan N, Singh N. A survey
on the detection of SQL injection attacks
and their countermeasures. Journal of
Information Processing Systems.
2017;13:689-702.

99. Kromann FM, Beginning PHP. MySQL:
from novice to professional: Apress; 2018.

100. Merlo E, Letarte D, Antoniol G. "Automated
protection of php applications against SQL-
injection attacks," in 11th European
Conference on Software Maintenance and
Reengineering (CSMR'07). 2007;191-202.

101. Boyd SW, Keromytis AD. "SQLrand:
Preventing SQL injection attacks," in
International Conference on Applied
Cryptography and Network Security.
2004;292-302.

102. Som S, Sinha S, Kataria R. Study on sql
injection attacks: Mode detection and
prevention. International Journal of
Engineering Applied Sciences and
Technology, Indexed in Google Scholar,
ISI etc., Impact Factor: 1.494. 2016;1:23-
29.

103. Sadalkar K, Mohandas R, Pais AR. "Model
based hybrid approach to prevent SQL
injection attacks in PHP," in International
Conference on Security Aspects in
Information Technology. 2011;3-15.

104. Patel N, Wimmer H, Powell LM. PHPBB3
bulletin board security testing. Issues in
Information Systems. 2020;21.

105. Jurásek P. PHP wander: A static
vulnerability analysis tool for PHP; 2018.

106. Alwan ZS, Younis MF. Detection and
prevention of sql injection attack: A survey.
International Journal of Computer Science
and Mobile Computing. 2017;6:5-17.

Kareem et al.; AJRCOS, 10(3): 13-32, 2021; Article no.AJRCOS.70376

32

107. Qian L, Zhu Z, Hu J, Liu S. "Research of
SQL injection attack and prevention
technology," in 2015 International
Conference on Estimation, Detection and
Information Fusion (ICEDIF). 2015;303-
306.

108. Sadegh MSS, Zarafshan F, Safari M,
Rahimian A, Markazi I. Optimization of
multi-agent security solution for prevent
web-based system of SQL injection attack;
2018.

109. Zhang L, Zhang D, Wang C, Zhao J,
Zhang Z. ART4SQLi: The ART of SQL
injection vulnerability discovery. IEEE
Transactions on Reliability. 2019;68:1470-
1489.

110. Win SS, Thwin MMS. Preventive
mechanism for potential security threats
and attacks on virtual cloud ldap server.

111. Cueva-Hurtado M, Figueroa-Diaz R,
Aguilar-Soto W, Armijos-Ordoñez M.
Systematic literature review on the LDAP
protocol as a centralized mechanism for
the authentication of users in multiple
systems revisión sistemática de literatura
sobre el protocolo LDAP como mecanismo
centralizado.

112. Rahman A, Islam MM, Chakraborty A.
Security assessment of PHP web
applications from SQL injection attacks.
Journal of Next Generation Information
Technology. 2015;6:56.

113. Aliero MS, Ghani I, Qureshi KN, Rohani
MFA. An algorithm for detecting SQL
injection vulnerability using black-box
testing. Journal of Ambient Intelligence and
Humanized Computing. 2020;11:249-266.

114. Sarjitus O, El-Yakub M. Neutralizing SQL
injection attack on web application using
server side code modification. Int J Sci Res
Comput Sci Eng Inf Technol. 2019;5.

115. Shar LK, Tan HBK. "Predicting common
web application vulnerabilities from input
validation and sanitization code patterns,"
in 2012 Proceedings of the 27th
IEEE/ACM international conference on
automated software engineering.
2012;310-313.

116. Shwaish AK, Hussain MA, Al-Kashoash
HA. Encoding Query Based Lightweight
Algorithm for Preventing SQL injection
attack. Journal of Basrah Researches
((Sciences)). 2020;46.

117. Adam SI, Andolo S. "A new PHP web
application development framework based
on MVC architectural pattern and ajax
technology," in 2019 1st International
Conference on Cybernetics and Intelligent
System (ICORIS). 2019;45-50.

118. Gao H, Zhu J, Liu L, Xu J, Wu Y, Liu A.
"Detecting SQL injection attacks using
grammar pattern recognition and access
behavior mining," in 2019 IEEE
International Conference on Energy
Internet (ICEI). 2019;493-498.

119. Ojagbule O, Wimmer H, Haddad RJ.
"Vulnerability analysis of content
management systems to SQL injection
using SQLMAP," in Southeast Con.
2018;1-7.

120. McWhirter PR, Kifayat K, Shi Q, Askwith B.
SQL Injection Attack classification through
the feature extraction of SQL query strings
using a gap-weighted string subsequence
kernel. Journal of information security and
applications. 2018;40:199-216.

121. Natarajan K, Subramani S. Generation of
SQL-injection free secure algorithm to
detect and prevent SQL-injection attacks.
Procedia Technology. 2012;4:790-796.

122. Gu H, Zhang J, Liu T, Hu M, Zhou J, Wei
T, et al. DIAVA: a traffic-based framework
for detection of SQL injection attacks and
vulnerability analysis of leaked data. IEEE
Transactions on Reliability. 2019;69:188-
202.

123. Dalimunthe RA, Sahren S. "Intrusion
detection system and modsecurity for
handling sql injection attacks," in
International Conference on Social,
Sciences and Information Technology.
2020;187-194.

124. Tang P, Qiu W, Huang Z, Lian H, Liu G.
Detection of SQL injection based on
artificial neural network. Knowledge-Based
Systems. 2020;190:105528.

© 2021 Kareem et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://www.sdiarticle4.com/review-history/70376

