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Abstract 
 

In the manuscript, a concept of a mixed monotone mapping is acquainted and a coupled fixed point 
theorems is substantiated for such nonlinear shrinkage mappings in partially ordered exact rectangular 
metric spaces. We enlarge and universalize the conclusions of these theory.  
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1 Introduction 
 
Stefan Banach is a Polish mathematician, who established a benchmark fixed point theorem for the Banach 
Shrinkage Principle (BSP). The BSP has been universalized in many different respects. Many researcher 
enlarged to the situation of nonlinear shrinkage mappings. Presence of a fixed point in partially ordered 
metric spaces are imagined in [1-12] so far, here implementations to matrix equations, ordinary differential 
equations and integral equations are asserted. 
 
A coupled fixed point is acquainted by Bhaskar and Lakshmikantham [2] and some coupled fixed point 
theorems is demonstrated for mixed monotone mappings in ordered metric spaces. Subsequently, another 
conclusions on coupled fixed point theory subsist in the theory, for further particulars, the commentator is 
mentioned to [13,6-12]. 
 
Branciari [3] defined a rectangular metric space (RMS) by replacing the sum at the righthand side of the 
triangle inequality by a three-term expression. He also substantiated an alike of the BSP. The intriguing 
nature of these spaces has attracted attention, and fixed points theorems for various shrinkage mappings on 
rectangular metric spaces have been established [14,5,8]. 
 
In this article, the presence of a coupled fixed point is attested for a mixed monotone mapping 

:T X X X   under a universalized shrinkage, build the uniqueness under a supplementary 
presumption on partially ordered exact rectangular metric space. 
 
 We state primary definitions and notations to be used throughout this paper. Rectangular metric spaces are 
designated as below. 
 

Definition 1.1: [6] Assume X  is a not null set and : [0, ]d X X    satisfy the following conditions 

for all ,x y X  and all distinct ,u v X  each of which is dissimilar from x  and .y  

 

(RM1)  ( , ) = 0 =d x y x y ,  

(RM2)  ( , ) = ( , )d x y d y x ,  

(RM3)  ( , ) ( , ) ( , ) ( , )d x y d x u d u v d v y   .  

 

At that time the map d  is named a rectangular metric and the pair ( , )X d  is named a rectangular metric 

spaces (RMS). 
 

Definition 1.2: [10] Suppose ( , )X   is a partially ordered set, :T X X X  . T  has got the mixed 

monotone property if ( , )T x y  is monotone nondecreasing with respect to ,x  is monotone non-increasing 

with respect to y , namely, for any ,x y X ,  

 

1 2 1 2 1 2, , , ( , ) ( , )x x y X x x T x y T x y    

 and  

1 2 1 2 1 2, , , ( , ) ( , ).y y x X y y T x y T x y    

  

Definition 1.3: [10] A member ( , )x y X X   is named a coupled fixed point of the mapping T  if  

 

( , ) =T x y x  and ( , ) =T y x y . 
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 For any ( , ), ( , )x y u v X X  , the product space X X  is equipped with the metric   described by 

 

( , ) ( , )
(( , ), ( , )) = .

2

d x u d y v
x y u v


 

 
So   is a rectangular metric. 

 
Definition 1.4: [6]  
  

(i) A sequence nx  in a RMS ( , )X d  is RMS convergent to a limit ( , ) 0nx d x x   as 

       n   .  

(ii) A sequence nx  in a RMS ( , )X d  is RMS Cauchy   for every > 0  there subsist a positive 

integer ( )N   with ( , ) <n md x x   for all > > ( )n m N  .  

(iii) A RMS ( , )X d  is named exact if every RMS Cauchy sequence in X  is RMS convergent.  

 
The fixed point theorem is described by, Lakzian and Samet [8] as below. 
 

Theorem 1.5: [8] Suppose ( , )X d  is a Hausdorff and exact RMS and assume :T X X  is a self-map 

ensuring 
 

( ( , )) ( ( , )) ( ( , ))d Tx Ty d x y d x y     

 

for all , ,x y X  and ,  , where   is non-decreasing. At that time T  has got an individual fixed 

point in X .  
 
Recently, İ. M. Erhan et al. [6] secured the fabulous conclusion and gave a universalization of Theorem 1.5 

for a larger class of ( , )   weakly shrinkage mappings. 

 

Theorem 1.6: [6] Suppose ( , )X d  is a Hausdorff and exact RMS and assume :T X X  is a self-map 

convincing 
 

( ( , )) ( ( , )) ( ( , )) ( , )d Tx Ty M x y M x y Lm x y      

  

for all ,x y X  and ,  , where > 0L , the function   is nondecreasing and at that time T  has 

got an individual fixed point in X .  
 

( , ) = { ( , ), ( , ) ( , )},M x y max d x y d x Tx d y Ty  

 

( , ) = { ( , ) ( , ), ( , ) ( , )}.m x y min d x Tx d y Ty d x Ty d y Tx
 

 

At that time T  has got an individual fixed point in X .  
 
In next section, we give a universalization of Theorem 1.6 for a mixed monotone mappings. We verify a 
coupled fixed point theorem in partially ordered exact rectangular metric spaces. 
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2 Main Consequence 
 
Now the main conclusion is certified. 
 

Theorem 2.1:  Supposing ( , )X   is partially ordered set and ( , )X d  Hausdorff and exact RMS. Suppose 

there is a function , :[0, ) [0, )      with ( ) <t t , ( ) <t t  and for each > 0t  lim ( ) <
r t

r t


, 

lim ( ) <
r t

r t


 and also the mixed monotone property on X  is verified by :T X X X   be a 

continuous mapping and 
 

( ( , ), ( , )) ( (( , ), ( , ))) ( (( , ), ( , )))d T x y T u v x y u v x y u v                                               (1) 

 

 for all , , ,x y u v X  for which ,x u  y v  There subsist 0 0( , )x y X X   with 0 0 0( , ),x T x y  

0 0 0( , )y T y x . So T  has got an individual coupled fixed point. 

 

Proof. Suppose 0 0,x y X  is with 0 0 0( , ),x T x y  0 0 0( , )y T y x . Let 1 0 0= ( , ),x T x y  

1 0 0= ( , )y T y x . Then 0 1,x x  0 1y y . Again, let 2 1 1= ( , ),x T x y  2 1 1= ( , )y T y x . The mixed 

monotone property is verified by T , obtaining 1 2,x x  1 2y y . To continue to do so, two sequences 

{ },nx  { }ny  are built in X  with 1 = ( , )n n nx T x y , 1 = ( , ),n n ny T y x   

 

0 1 2 1n nx x x x x                                                                                                 (2) 

  
and,  
 

0 1 2 1 .n ny y y y y                                                                                                (3) 

 
 Denote  
 

1 1
1 1

( , ) ( , )
= (( , ), ( , )) =

2
n n n n

n n n n n

d x x d y y
x y x y   

 


.                                                     (4) 

 

We show that 1<n n   . Now, enforcing if the inequality (1) is implemented with ( , ) = ( , ),n nx y x y  

1 1( , ) = ( , )n nu v x y  , for all 0n  . Utilizing properties of  , we get  

 

1 1 1( ( , ), ( , )) = ( , )n n n n n nd T x y T x y d x x     

 

                                                              1 1 1 1( (( , ),( , ))) ( (( , ),( , )))n n n n n n n nx y x y x y x y            

                                               1 1 1 1( (( , ),( , ))) < (( , ),( , ))n n n n n n n nx y x y x y x y      .      (5) 

 

 Similarly, we can obtain  
 

1 1 1( , ) < (( , ),( , )n n n n n nd y y x y x y   .                                                                                        (6) 
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 Thus we acquire  
 

1 1
1 1

( , ) ( , )
< (( , ), ( , )

2
n n n n

n n n n

d x x d y y
x y x y 

 


. 

 

 That is 1<n n   . Thus { }n  is monotone decreasing bounded to the bottom. Hereby, there subsist a 

0   with  
 

=lim n
n

 


. 

 

 Demonstrating = 0 . Supposing the contrary > 0 . At that time from (1) obtaining  
 

1 1 1( ( , ), ( , )) = ( , )n n n n n nd T x y T x y d x x   1 1( (( , ),( , )))n n n nx y x y     

         1 1( (( , ),( , )))n n n nx y x y    1 1( (( , ),( , )))n n n nx y x y    .                                     (7) 

 
 Similarly, we can obtain  
 

1 1 1( , ) < ( (( , ),( , )))n n n n n nd y y x y x y    .                                                                                (8) 

 
 Thus we get  
 

1 1
1 1

( , ) ( , )
< (( , ),( , ) .

2
n n n n

n n n n

d x x d y y
x y x y 

 


                                                               (9) 

 
 While n    in (9), getting  
 

1lim lim .n n
n n


 

       

 

 So the incompatibility is obtained. Hence = 0 . Namely  
 

1 1
1 1

( , ) ( , )
(( , ),( , )) = = 0.lim lim

2
n n n n

n n n n
n n

d x x d y y
x y x y  

 
 


  

 
 Thus  
 

1lim ( , ) 0n n
n

d x x 


  and 1lim ( , ) 0.n n
n

d y y 


                                                                          (10) 

 

Evidencing { },nx  { }ny  are RMS Cauchy sequences. To accept the opposite that at least one of { }nx  or 

{ }ny  is not a RMS Cauchy sequence. At that time there subsist an > 0  when obtaining two 

subsequences ( ){ }n ix  and ( ){ }m ix  of { }nx  with ( )n i  is the smallest index where 

 

( ) ( ) ( ) ( )( ) > ( ) > , ( , ) ( , ) .m i n i m i n in i m i i d x x d y y                                                                (11) 
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This means that 
 

( ) ( ) 1 ( ) ( ) 1( , ) ( , ) < .m i n i m i n id x x d y y                                                                                         (12) 

 

 By (RM3) , we obtain  

 

( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )( , ) ( , ) ( , ) ( , ).m i n i m i m i m i n i n i n id x x d x x d x x d x x                                      (13) 

 

 Similarly from (RM3) , we can obtain  

 

( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( )( , ) ( , ) ( , ) ( , ).m i n i m i m i m i n i n i n id y y d y y d y y d y y                                    (14) 

 
 By adding (13) and (14), from (10), (11) and (12)  
 

( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) 1( , ) ( , ) [ ( , ) ( , )]m i n i m i n i m i m i m i m id x x d y y d x x d y y      

( ) 1 ( ) 1 ( ) 1 ( ) 1[ ( , ) ( , )]m i n i m i n id x x d y y    ( ) 1 ( ) ( ) 1 ( )[ ( , ) ( , )].n i n i n i n id x x d y y    (15) 

 

 Getting the limit as i  in (15), obtaining by (10), (11)  
 

( ) ( ) ( ) ( )

( ) 1 ( ) 1 ( ) 1 ( ) 1

lim[ ( , ) ( , )]

lim[ ( , ) ( , )] .

m i n i m i n i
i

m i n i m i n i
i

d x x d y y

d x x d y y



   


 

 


                                                                     (16) 

 

 Similarly from (RM3) , we can obtain 

 

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) ( ) 1 ( )( , ) ( , ) [ ( , ) ( , )]m i n i m i n i m i m i m i m id x x d y y d x x d y y         

 

( ) ( ) ( ) ( )[ ( , ) ( , )]m i n i m i n id x x d y y  ( ) ( ) 1[ ( , )n i n id x x  ( ) ( ) 1( , )].n i n id y y  (17) 

 

 Having the limit as i  in (17), we get by (10), (11), (16)  
 

( ) ( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1lim[ ( , ) ( , )] lim[ ( , ) ( , )] .m i n i m i n i m i n i m i n i
i i

d x x d y y d x x d y y   
 

         (18) 

 

 Applying inequality (1) with ( ) 1 ( ) 1( , ) = ( , ),m i m ix y x y   ( ) 1 ( ) 1( , ) = ( , )n i n iu v x y   

 

( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1( , ) = ( ( , ), ( , ))m i n i m i m i n i n id x x d T x y T x y     

                         ( ) 1 ( ) 1 ( ) 1 ( ) 1( (( , ),( , )))m i m i n i n ix y x y           

                          ( ) 1 ( ) 1 ( ) 1 ( ) 1< (( , ),( , ))m i m i n i n ix y x y     .                                                            (19) 

 
Similarly we get  
 

( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1( , ) < (( , ),( , ))m i n i m i m i n i n id y y x y x y     .                                                             (20) 
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Before by adding (19) and (20) and after taking the limit as i , we get  
 

( ) ( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 1 ( ) 1lim[ ( , ) ( , )] lim[ ( , ) ( , )] .m i n i m i n i m i n i m i n i
i i

d x x d y y d x x d y y   
 

    

 

From (18), this is a contradiction. Then { },nx  { }ny  are RMS Cauchy sequences. Because ( , )X d  is exact 

there subsist ,x y X  with  

 

=lim n
n

x x


 and =lim n
n

y y


.                                                                                                       (21) 

 

From continuity of T  and since X  is Hausdorff, obtaining  
 

1lim lim ( , ) ( , ),n n n
n n

x x T x y T x y
 

     

 
 and  
 

1lim lim ( , ) ( , ).n n n
n n

y y T y x T y x
 

    

 

Theorem 2.2: Suppose ( , )X   is partially ordered set and ( , )X d   Hausdorff and exact RMS. Assume 

:T X X X   is a mapping possessing mixed monotone property. Supposing there is a function ,   

like in Theorem 2.1 and ( ) = 0 = 0t t  . Assuming X   has property as below:  

 

(a)  for all n , if a non-decreasing sequence { }nx x , at that time nx x   

(b)  for all n , if a non-increasing sequence { }ny y , at that time ny y .  

 

If there subsist 0 0,x y X  with 0 0 0( , )x T x y  and 0 0 0( , )y T y x , at that time there subsist 

,x y X  with = ( , ),x T x y  = ( , )y T y x , namely T  has got an individual coupled fixed point. 

 

Proof. Coming after the proof of Theorem 2.1, constructing a non-decreasing sequence { }nx  in X  and a 

non-increasing sequence { }ny  in X  with 1 = ( , )n n nx T x y  and 1 = ( , )n n ny T y x  for all 0n   and 

verifying (21). 
 

 Thence by properties of X  , obtaining nx u  and ny v  for all 0n  . By (1), having  

 

1( , ( , )) = ( ( , ), ( , )) ( (( , ), ( , )))

( (( , ), ( , )))

n n n n n

n n

d x T x y d T x y T x y x y x y

x y x y

 

 
 


                                                                 

                                                                                          ( (( , ),( , )))n nx y x y  . 

 
 On letting n   , using (21) and properties of  , we get that  

 

1lim ( , ( , )) 0n
n

d x T x y


 .                                                                                                            (22) 
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 Conversely, from (RM3)  getting  

 

2 2 1 1( , ( , )) ( , ) ( , ) ( , ( , ))n n n nd x T x y d x x d x x d x T x y      . 

 

 While n    in the foregoing imparity, utilizing (21), (10) and (22), having ( , ( , )) = 0d x T x y  namely 

= ( , )x T x y . Analogous, displaying = ( , )y T y x . 

 

3 Conclusion 
 
We have specified fixed point theorems in partially ordered rectangular metric. It is interesting that each 
fixed point theorems are verifying in the theory, because the theory is consisting.  
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