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Abstract 
 

The original computations deriving the Casimir energy and force consists of first taking limits of the 
spectral zeta function and afterwards analytically extending the result. This process of computation 
presents a weakness in Hendrik Casimir’s original argument since limit and analytic continuation do not 
commute. A case of the Laplacian on a parallelepiped box representing the space as the vacuum between 
two plates modelled with Dirichlet and periodic Neumann boundary conditions is constructed to address 
this anomaly. It involves the derivation of the regularised zeta function in terms of the Riemann zeta 
function on the parallelepiped. The values of the Casimir energy and Casimir force obtained from our 
derivation agree with those of Hendrik Casimir.  
 

 
Keywords: Laplacian; zeta function; Casimir energy; parallelepiped; analytic continuation.  
 
MSC class: 35P20; 35R01 
 

1 Introduction 
 
The Casimir force has been a fundamental issue in Quantum Field Theory since the prediction of Hendrik B. 
G. Casimir and Dirk Polder in the year 1948, [1]. Casimir and Polder in [1] established that there exists a 

Original Research Article 



 
 
 

Omenyi; ARJOM, 4(3): 1-14, 2017; Article no.ARJOM.33689 
 
 
 

2 
 
 

force between a pair of neutral perfectly conducting parallel plates placed close together in a vacuum space. 
Fig. 1 illustrates this idea.  

  

 
 

Fig. 1. The conducting plates [2] 
 

Small dielectric bodies interacting at a “reasonable" distance attract, [3], and based on summation of the 
two-body forces, one may speculate that any two dielectrics would attract. Modern physics indicates that this 
result derives from the fluctuating electromagnetic waves in a vacuum space, despite the fact that the 
presence of these waves in a vacuum appears counter intuitive. While this phenomenon has since been 
reformulated as a pure mathematical problem [4-7] and further described for different Riemannian manifolds 
using various methods, see for example [3,8-13], the available literature on the mathematical reasoning 
behind this result is scarce. 
 

Let ),( gM  be a closed connected smooth Riemannian manifold, where g is the canonical Riemannian 

metric on .M  The Laplacian on )(MC
 is the operator  

 

)()(: MCMCg
                                                                                                             (1.1) 

 

defined in local coordinates by  
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in terms of the elements of the metric .g  The operator g  extends to a self-adjoint operator on 

)()()( 222 MLMHML   with compact resolvent, [14-16], among other literature. This implies that there 

exists orthonormal basis )(}{ 2 MLk   consisting of eigenfunctions such that  

 

kkkg  =                                                                                                                             (1.3) 

 

where the eigenvalues 
1=}{ kk  are listed with multiplicities. 

 

The Casimir energy is defined for the Laplacian on the compact Riemannian manifold ),,( gM  

mathematically via the spectral zeta as a function on the set of metrics g  on the manifold by ),
2

1
(g  [17, 

8] or via the energy function ,CE  [2], given by  
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 at .
2

1
= s  A factor 2  has been introduced for the two possible polarization of the photons. 
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Of course, the sum in (1.4) does not converge and a regularisation process should be introduced to make it 
meaningful. Zeta function regularisation assigns a finite value to the divergent series, [3,11,12]. 
 
Casimir computed the Casimir energy and force between the plates by first taking the limit of the spectral 
zeta function as the area of the plates tends to infinity and subsequently computed the analytic continuation 
of the limit, [18]. The attractive force was shown to be proportional to the fourth power of the inverse of the 
distance between the plates, [1]. However, this approach is a weakness in his argument since limits and 
analytic continuation do not commute. The goal of this paper is to address this problem and consequently 
perform the computation in the standard order. The results obtained agree with the formulae of Casimir and 
those obtained using other methods. 
 
The paper is organised in sections. Section one is the introduction while section two highlights analytic 
continuation. Eigenvalues of the Laplacian on the parallelepiped is presented in section three while sections 
four and five present the main result, namely, the regularised formula for the Casimir energy. Concluding 
remarks are in section six. 

 

2 Analytic Continuation 
 
Analytic continuation of a given function is a method to extend the domain of the function, i.e find other 

values of the function which are initially undefined, [19,11]. Given a function f  with domain ,1  find a 

function g  that matches f  on 1  but now defined in a larger region .2  Alternatively, on a complex 

plane, take a non-singular point 0x  of f  with the associated circle of convergence of its Taylor series. This 

circle of convergence will pass through the nearest singularity of f  at .0x  Then take another non-singular 

point 1x  on this circle of convergence of its Taylor series. Repeat this process. The union of sets of all these 

circles form a larger region/domain, 3  say, on which f  is defined thus ),(= 3fg  forms the analytic 

continuation of .f  Note, if the analytic continuation of f  exits, it is unique. 

 
Limits and analytic continuation do not usually commute. To see this consider the following sequence of 

functions defined for any Cz  by 
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Clearly, 1.=)(lim zfnn   The analytic continuation of )(lim zfnn   is the constant function 

1=)(zgn  defined on the whole of the complex plane, e.g. for 1,= z  1.=1)(ng  However, the 

analytic continuation of nf  is  
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 whose limit as n  is 0  (zero). 

We see that 01  which shows that the two operations do not commute hence justifying the rationale of this 
paper. 
 
Limits and integrals; sums and integrals are interchanged in this work using the  following theorems. 
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Theorem 2.1 [19]. Let )(
0=

xann


 be uniformly convergent on ].,[ ba  Let each na  be continuous on the 

interval. Then .d)(=d)(
0=0=

xxaxxa n

b

annn
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a 
   

 

Theorem 2.2 [19]. (Dominated Convergence Theorem). Let 
nR  be open and let }{ k  be a sequence 

of integrable functions on .  Suppose that )(=)(lim xxkk    -almost everywhere. Further 

suppose that there exists 0  with  <)(d)( xx   such that  

 

. )()( kxxk   Then )()( xx     -almost everywhere and  

 

);(d)(=)(d)(lim xxxxkk   
  where )(d x  is the measure form on .   

 

Theorem 2.3 [19]. (Fubini - Tonelli theorem). Let }{ k  be a sequence of measurable functions. Sum and 

integral such as dxxkk
)(  can be interchanged in either of the following cases: 

.<|)(|  or 0,   dxxk kkk  N   

 

Well known examples of analytic continuation are those of the gamma and Riemann zeta functions, see for 
example [20,11,12]. 
 

From here on, we suppress the subscript g  in )(sg  and .g  We simply write )(s  and   for )(sg  

and g  respectively, unless for purpose of emphasis. 

 

3 Eigenvalues of the Laplacian on the Parallelepiped 
 
Consider a region of space, i.e. a box C , defined by ,<<0 1lx  ,<<0 2ly  and 3<<0 lz  with 

,,, 321 Rlll  enclosing a metallic parallelepiped. The walls of the box are assumed to be non-conducting 

and they provide the space between the plates of the parallelepiped, (see Fig. 2).  
 

 
 

Fig. 2. The parallelepiped in a box C 
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We make the following definition.  
 

Definition 3.1 [14,15]. Let n  be the eigenvalues corresponding to the eigenfunctions n  satisfying a 

Laplacian eigenvalue equation nnn  =  subject to specific boundary conditions. The set of all these 

eigenvalues is called the spectrum of the Laplacian .   
 

In particular, the eigenstates of the electromagnetic field in the box C  are described by the Laplacian 
eigenvalue problem (LEP):  
 

0=)(                                                                                                                                 (3.1) 
 

where   and   are the associated eigenvalues and eigenfunctions of the Laplacian on smooth functions on 

the parallelepiped. 
 

In addition, we impose Dirichlet boundary conditions in the x -direction of the plates of the walls of the box 
because the electric potential vanishes on the plates and periodic boundary condition in the y  and z -

directions because the plates can be thought-of as a periodic arrangement of finite plates. The boundary 
conditions will change as the box is compressed. We do not consider what happens outside the box. This  
choice does not, however, matter since on the whole, the analysis will be independent of this and the 
Dirichlet boundary conditions could have been chosen instead without changing the end result of the paper. 
The chosen direction here makes the computations easier to handle. 
 
So the LEP with the boundary conditions is  
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By method of separation of variables, we assume non-zero solutions to (3.2) of the form 

)()()(=),,( zwyvxuzyx  so that the from the LEP (3.2), we now consider  
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So, observe in 
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 =  of (3.3) that the left-hand-side depend on x  while the right-hand-side 

depends on y  and .z  Equality of the sides implies that they must be equal to a constant ,R  say. Hence,  
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 and 0=)(=(0) with )(= 1luuuu ''    
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which reduces to a second order ordinary differential equation that can be solved quite easiy. It is not 
difficult to continue this way and obtain the solutions to the LEP (3.2) as  
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To normalize ,  we solve 1.=||||  That is  
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 So, using that 1=2||||  we have  
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 Therefore the spectrum of the Lapacian ,  subject to the boundary conditions, on the parallelepiped is  
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 corresponding to the normalised eigenfunction (3.5) satisfying (3.6). 
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4 The Casimir Energy 
 
Having found the eigenvalues of the Laplacian on the parallelepiped, we proceed to make sense of the 
divergent sum (1.4), i.e. the Casimir (vacuum) energy between the parallelepiped and the walls of the box, 
by extending its domain of convergence. Following the method of zeta function regularisation discussed in 

[3,8-13] among other related literature, given a differential operator ,A  the generalised zeta function of A  

is  
 

.Tr=)( s
A As                                                                                                                             (4.1) 

 

 If the spectrum of A  is discrete, i.e has set of eigenvalues ,n  we write the spectral zeta function as  
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Thus, it suffices to show that ))
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Our first result is given as theorem (4.1) below.  
 

Theorem 4.1: The spectral zeta function   of the Laplacian, subject to the Dirichlet and Neumann 
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Firstly note that individually )(
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The same method gives 
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The exponentially damped terms )(t  can be computed explicitly and can easily be shown to be 

holomorphic in .s  Therefore, the analytic continuation of   onto the whole s -complex plane is  
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where nmk ,,  is as given before. This proves the meromorphicity of    

 

5 Evaluating the Casimir Energy 
 
To compute the Casimir energy of the parallelepiped in the vacuum of the box C per unit area, we divide the 

energy function, ,cE  by the area of the parallelepiped, namely, .32ll  The fact that this force is only formed 

when the plates of the walls of the box are close enough together is equivalent to sending the area of the 

plates to infinity for a fixed distance 1l  between the plates of the walls of the box. Hence, we compute the 

limit  
 

.|
)(

lim 1/2=

323,2





s

ll ll

sc
 



 
 
 

Omenyi; ARJOM, 4(3): 1-14, 2017; Article no.ARJOM.33689 
 
 
 

11 
 
 

This leads to the main result of this paper given as the theorem (5.1) below.  
 

Theorem 5.1: The meromorphic continuation of the spectral zeta function   of the Laplacian on the 

parallelepiped is given by  
 

1).(2()(
1)(4

1
=)( 1)2(1

1



 s

l

s
sH R

s
l 


                                                                              (5.1) 

 

 It has simple poles at 1=s  and 
2

3
=s  only.  

 
This result is clearly confirmed by the mathematica output shown in Fig. 3 which displays the poles of 

)(
1

sHl .  

 

Proof. From the analytic continuation of ,  we have  

 

t
ll

ttt
t

ss

l

s
tt

ll

t

sll

s lllss d
)(

~
)(

~
)(

)
1

1

)
2

3
(

(
)(8

1
d

)(

)(

1
=

)(

32

3211

1

11

32

1

0
32














 




 

 
It therefore follows that  
 

tttttt
sll

s
sH l

s
l

s

ll
l d)](d)([

)(4

1
=

)(
lim=)(

1

2

11

2
1

0
323,2

1













 
 

ttt
ss

s
l

s d)(
1)()(4

1)(
=

1

2

0




 


  
 

1)(
1)(4

1
=

1, 


s
s

lR
  

 

since 
1

1
=

)(

1)(





ss

s
 and where ttt

s
s l

s
lR d)(

1)(

1
:=1)(

1

2

01, 


 


  is the Riemann zeta function 

dependent on .1l  
 
Now since  
 

s

k

ss

k
lR k

ll

k
s 2

1=

2

1
2

1

22

1=
1, )(=)(=1)( 










 

 

)(2)(= 21 s
l

R
s

  
 



 
 
 

Omenyi; ARJOM, 4(3): 1-14, 2017; Article no.ARJOM.33689 
 
 
 

12 
 
 

we have 
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Fig. 3. The analytic continuity of )(
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From equation (5.1) the Casimir energy is read-off as  
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Consequently, the energy, ,cE per unit area between the two plates of the walls of the box C and the 

parallelepiped is  
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which agree with the original values of Casimir; [21]. 
 

6 Conclusion 
 
This paper has successfully derived, in the right mathematical order, the Casimir energy and force as 
originally found by Casimir. The computations were made less-complicated in this work by imposing 
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Dirichlet boundary condition in the x -direction and periodic Neumann boundary condition in the y - and z
-directions of the box hosting the parallelepiped in the vacuum. 
 
Specifically, we showed that finding the analytic continuation of the spectral zeta function and then 
performing limit is the mathematical sound thing to do in computing Casimir energy of the Lapacian on 
closed Riemannian manifolds such as the parallelepiped. 
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