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Abstract

A continuous two-step method using trigonometric function basis is developed and used to
produce two discrete methods which are simultaneously applied as numerical integrators by
assembling them into a block method with trigonometric basis for solving oscillatory initial value
problems(IVP). The stability property of the method is well discussed and the performance of the
method is demonstrated on some numerical examples to show accuracy and efficiency advantages.
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1 Introduction

This paper considered the class of second order differential equation of the form

y′ = f(x, y), y(a) = y0, x ∈ [a, b] (1.1)

with oscillatory solutions where f : ℜ× ℜm → ℜm, y, y0 ∈ ℜ.m

In the field of ordinary differential equations, a nontrival solution to an ordinary differential equation

F (x, y, y′, · · · , y(n−1)) = y(n)

is called oscillating if it has an infinite number of roots.The differential equation is oscillating if
it has an oscillating solution. The number of roots carries information on the spectrum of the
associated boundary value problems. For example, the differential equation y′′+y = 0 is oscillating
as sinx is a solution.

Oscillatory Initial Value Problems usually occur in area such as Quatum Mechanics, Biological
Sciences, Classical Mechanics and Celestial Mechanics. A lot of numerical methods based on
polynomial and non polynomial basis have been developed for solving this important class of
problems [1, 2, 3, 4, 5, 6, 7, 8].

This paper constructs two-step method with trigonometric basis, which provides two discrete
methods that are combined and applied as block two step method with trigonometric basis which
take the frequency of the solution as a prior knowledge.

This paper adopts the approach given in Ngwane and Jator [8] and Jator et al. [7], where
the continuous two-step method with trigonometric basis is used to generate the main and one
additional method which are combined and used as a two-step block method to simultaneously
produce approximations.

{yn+1, yn+2} at block of points {xn+1, xn+2},

h = xn+1 − xn, n = 0, · · · , N − 1 on a partition [a, b], where h is the step size, n is the grid index
and N > 0 is the number of steps. The block methods generates approximations {yn+1, yn+2} to
the exact solution {y(xn+1), y(xn+2)}

The paper is organized as follows. In section 2, a trigonometric basis representation U(x) for the
exact solution y(x) which are used to generate two discrete methods and which are also combined
to solve (1.1) is derived. The analysis and implementation of the new method are given in section 3.
Numerical examples are given in section 4 to show accuracy and efficiency of the new block method.
The conclusion of the paper is discussed in section 5.

2 Derivation of the Method

A two-step with trigonometric basis which produces two discrete methods as by-products is derived.
The main method has the form

yn+1 = yn + h{α0(u)fn + α1(u)fn+1 + α2(u)fn+2} (2.1)

and the additional method is given by

yn+2 = yn + h{α̂0(u)fn + α̂1(u)fn+1 + α̂2(u)fn+2} (2.2)
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where u = wh, αj , α̂1, j = 0(1)2, are coefficients that depend on the step-size and frequency. yn+1

is the numerical approximation to analytical solution y(xn+1).

In order to obtain (2.1) and (2.2), the paper proceeds by seeking to approximate the exact solution
y(x) on the interval [xn, xn+h] through interpolation function U(x) of the form:

U(x) = a0 + a1x+ a2 sin(wx) + a3 cos(wx), (2.3)

where ai, i = 0(1)3, are coefficients that must be uniquely determined. The paper then imposes
that the interpolating function (2.3) coincides with the analytical solution at the end point xn to
obtain the equation

U(xn) = yn, (2.4)

It is also demanded that the function (2.3) satisfies the differential equation (1.1) at points xn+j ,
j = 0, 1, 2 to obtain the following set of three equations:

U ′(xn) = fn, U ′(xn+1) = fn+1, U ′(xn+2) = fn+2 (2.5)

The system of equation in (2.4) and (2.5) are solved by ”Cramer’s rule” to obtain aj , j = 0(1)3.
Continuous two step method with trigonometric basis is constructed by substituting the values of
aj into (2.3). After some algebraic manipulation, the new two-step method is of the form:

U(x) = yn + h{α0(w, x)fn + α1(w, x)fn+1 + α2(w, x)fn+2}, (2.6)

where w is the frequency, αj(w, x), j = 0(1)2 are continuous coefficients. The continuous method
(2.6) is used to generate the main method of the form (2.1) and an additional method of the form
(2.2) by evaluating (2.6) at x = {xn+1, xn+2} and letting u = wh, the coefficients of (2.1) and (2.2)
obtained are obtained

α0 =
1

2

(
−u sin (u)− 2 (cos (u))2 + 2 cos (u)

)
u sin (u) (cos (u)− 1)

α1 =
1

2

(
2u sin (u) cos (u) + 2 (cos (u))2 − 2

)
u sin (u) (cos (u)− 1)

(2.7)

α2 =
1

2

(−u sin (u)− 2 cos (u) + 2)

u sin (u) (cos (u)− 1)

α̂0 =
(−u+ sin (u))

u (cos (u)− 1)

α̂1 =
(2u cos (u)− 2 sin (u))

u (cos (u)− 1)
(2.8)

α̂2 =
(−u+ sin (u))

u (cos (u)− 1)

3 Error Analysis and Stability

3.1 Local truncation error

Taylor series is used for small values of u (see Simos [9]). The coefficient of (2.7) and (2.8) can be
expressed as:

α0 =
5

12
+

19u2

720
+

23u4

10080
+

263u6

1209600
+

1033u8

47900160
+

945979u10

435891456000
+ · · ·
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α1 =
2

3
− u2

90
− u4

2520
− u6

75600
− u8

2395008
− 691u10

54486432000
+ · · · (3.1)

α2 = − 1

12
− 11u2

720
− 19u4

10080
− 247u6

1209600
− 1013u8

47900160
− 940451u10

435891456000
+ · · ·

α̂0 =
1

3
+

u2

90
+

u4

2520
+

u6

75600
+

u8

2395008
+

691u10

54486432000
+ · · ·

α̂1 =
4

3
− u2

45
− u4

1260
− u6

37800
− u8

1197504
− 691u10

27243216000
+ · · · (3.2)

α̂2 =
1

3
+

u2

90
+

u4

2520
+

u6

75600
+

u8

2395008
+

691u10

54486432000
+ · · ·

The Local Truncation Error(LTE) for methods (2.1) and (2.2) are given by

LTE(2) =
h4

24

(
w2y(2)(xn) + y(4)(xn)

)
LTE(3) = −h5

90

(
w2y(2)(xn) + y(4)(xn)

)
(3.3)

3.2 Stability

The block by block method for computing vectors Y0, Y1, Y2, · · · in sequence is defined (see Fatunla
[10]). Let the η-vector(η = 2 is the number of points within the block) Yµ, Yµ−1, Fµ and Fµ−1 be
given as Yµ = (yn+1, yn+2)

T ,Yµ−1 = (yn−1, yn)
T , Fµ = (fn+1, fn+2)

T , Fµ−1 = (fn−1, fn)
T , then

the 1-block 2-point method for (1.1) is given as:

Yµ =

1∑
i=1

A(i)Yµ−1 +

1∑
i=0

B(i)Fµ−1, (3.4)

where A(i), B(i) , i = 0, 1 are 2× 2 matrices whose entries are given by the coefficient of (2.1) and
(2.2).

Zero stability

The block method in (3.4) is zero stable provided the roots Rj , j = 1, 2 of the first characteristic
polynomial ρ(R) is specified by

ρ(R) = det

[
1∑

i=0

A(i)Ri−1

]
= 0, A(0) = −I (3.5)

satisfies |Rj | ≤ 1, j = 1, 2 and for those roots with |Rj | = 1, the multiplicity does not exceed 1 (see
Fatunla [10]).

Consistency

Our block method in (3.4) is consistent(it has order p > 1).
The block method is convegent(Convergence = Zero stability+ consistency)

4 Implementation of the Scheme

Method (2.1) and (2.2) are implemented more efficiently as simultaneous integrator for IVPs
without requiring starting values and predictors. This paper proceeds by explicitly obtaining initial
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conditions at xn+2, n = 0, 2, · · · , N −2 using the computed values y(xn+2)=yn+2 over sub-intervals
[x0, x2], · · · , [xN−2, xN ]. For instance, using equations (2.1− 2.2), and with n = 0. (y1, y2)

T , are
simultaneously obtained over the sub-interval [x0, x2], as y0 is known from the IVP (1). Also for
n = 2, (y3, y4)

T are simultaneously obtained over the sub-interval [x2, x4], as y2 is known from the
previous block, where T is the transpose and so on. Hence, the sub-interval do not over-lap and
the solution in this manner is more accurate than those obtained in the conventional fashion.

On the choice of frequency(w), the method in Vigo-Aguiar and Ramos [11], on their paper titled
” On the choice of the frequency in trigonometrically-fitted method” is adopted. The paper uses
the trigonometrically-fiited method to obtain an approximate solution to some nonlinear oscillators
and also presents a strategy for the choice of frequency in trigonometrically-fiited method.

5 Numerical Examples

In order to study the accuracy and efficiency of the developed methods, This paper presents some
numerical experiments:

Example 1.1

y”=-100y+99sin(x), y(0) = 1, y′(0) = 11 (Adeniran et al. [2])
Exact solution :y(x)=cos(10x) + sin(10x) + sin(x)

Table 1. Showing the exact solutions, computed results and error from the proposed
methods for example 1.1 with h = 1

320
, w = 1

x yExact yComputed error Error in Adeniran et al. [2]
1

320
1.03388166738420 1.03388166738410 9.99 × 10−14 9.170 × 10−11

2
320

1.06675678785246 1.06675678785234 1.20 × 10−13 -
3

320
1.09859628036501 1.09859628036580 7.90 × 10−13 3.0905 × 10−10

4
320

1.12937207509627 1.12937207509610 1.69 × 10−13 -
5

320
1.15905714081491 1.15905714081441 5.00 × 10−13 -

6
320

1.18762550988244 1.18762550988224 2.00 × 10−13 4.8987 × 10−10

7
320

1.21505230844501 1.21505230844510 8.99 × 10−14 -
8

320
1.24131377434580 1.24131377434560 2.00 × 10−13 -

9
320

1.26638728387076 1.1.26638728387046 3.00 × 10−13 -
10
320

1.29025137290459 1.29025137290430 2.99 × 10−13 -

The numerical result for Example 1.1 were presented in Tables 1. The problem was compared to
other existing method. The new two step trigonometric method displayed better accuracy within
the range of integration.

Example(1.2)

The initial value problem is considered

y′′(x) =
(y′)2

2y
− 2y, y(

π

6
) =

1

4
and y′(

π

6
) =

√
3

2
(Alabi et al. [12])

exact solution: y = sin2 x
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Table 2. Showing the exact solutions, computed results and error from the proposed
methods for Problem 1.2, h = 0.1, w = 1.

x yExact yComputed Error Error in Alabi et al. [12]

0.1 0.0099667110793792 0.00996671107827122 1.1 × 10−12

0.2 0.0394695029985574 0.0394695029786944 2.0 × 10−11

0.3 0.0873321925451611 0.0873321924526160 9.3 × 10−11

0.4 0.1516466453264171 0.151646645281091 4.5 × 10−11

0.5 0.229848847065930 0.229848847017083 4.9 × 10−11

0.6 0.318821122761663 0.318821122673452 8.8 × 10−11 1.013 × 10−08

0.7 0.415016428549879 0.415016428485594 6.4 × 10−11 4.782 × 10−08

0.8 0.514599761150645 0.514599761134647 1.6 × 10−11 1.109 × 10−07

0.9 0.613601047346543 0.613601047330533 1.6 × 10−10 1.892 × 10−07

1.0 0.708073418273572 0.708073418262838 1.1 × 10−10 1.196 × 10−07

1.1 0.794250558627672 0.794250558333421 2.9 × 10−10 3.019 × 10−07

1.2 0.868696857770622 0.868696848083653 9.7 × 10−09 2.561 × 10−07

1.3 0.928444376684474 0.928444372840036 3.8 × 10−09 1.435 × 10−07

1.4 0.971111170334329 0.971111163223212 7.1 × 10−09 1.019 × 10−07

1.5 0.994996248300222 0.994996243303974 5.0 × 10−09 2.319 × 10−07

1.6 0.999147387897376 0.999147386423497 1.5 × 10−09 5.892 × 10−07

1.7 0.983399096289731 0.983399092298768 4.0 × 10−09 1.013 × 10−06

1.8 0.948379208167073 0.948379206787865 1.4 × 10−09 1.211 × 10−06

1.9 0.895483855957207 0.895483801118647 5.5 × 10−08 1.287 × 10−06

2.0 0.826821810431807 0.826821783609997 2.7 × 10−08 1.435 × 10−06

The numerical result for Example 1.2 were presented in Tables 2. The problem was compared to
other existing method. The new two step trigonometric method displayed better accuracy within
the range of integration.

6 Conclusion

The two-step trigonometrically fitted method for solving oscillatory IVPs generated in this paper
is accurate, efficient, consistent and zero stable. This method is self-starting and requires no
predictor it requires only two functions evaluation at each integration step. The method complete
favorably with other existing methods [12, 2] in the literature.
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