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ABSTRACT

In this paper, closed forms of the summation formulas for generalized Fibonacci numbers are
presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas,
Jacobsthal, Jacobsthal-Lucas numbers.

Keywords: Fibonacci numbers; Lucas numbers; Pell numbers; Jacobsthal numbers; sum formulas;
summing formulas.
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1 INTRODUCTION

Horadam [1] defined a generalization of Fibonacci sequence, that is, he defined a second-order linear
recurrence sequence {W,,(Wo, W1;r, s)}, or simply {W,}, as follows:

Wy = 1rWn_1 + sWn_o; Wo=c, Wi =d, (n>2) (1.1)
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where Wy, Wi are arbitrary complex numbers and r, s are real numbers, see also Horadam [2], [3]
and [4]. Now these generalized Fibonacci numbers {W, (a, b;r, s)} are also called Horadam numbers.
The sequence {W,}..>0 can be extended to negative subscripts by defining

r 1
W_n = _7W—(n—l) + 7W—(n—2)
S S
forn =1,2,3, ... when s # 0. Therefore, recurrence (1.1) holds for all integer n.
For some specific values of ¢, d, r and s, it is worth presenting these special Horadam numbers in a
table as a specific name. In literature, for example, the following names and notations (see Table 1)

are used for the special cases of r, s and initial values.

Table 1. A few special case of generalized Fibonacci sequences

Name of sequence Notation: W, (¢, d;r, s) OEIS: [5]
Fibonacci F, = Wx(0,1;1,1) A000045
Lucas L, =W,(2,1;1,1) A000032

Pell P, =W,(0,1;2,1) A000129
Pell-Lucas Qn =Wn(2,2;2,1) A002203
Jacobsthal Jn =Wy (0,1;1,2) A001045
Jacobsthal-Lucas jn = Wa(2,1;1,2) A014551

The following theorem presents some summing formulas of generalized Fibonacci numbers with
positive subscripts.

Theorem 1.1. Forn > 0 we have the following formulas:

(a) (Sum of the generalized Fibonacci numbers) If r + s — 1 # 0, then

iW _ Wn+2 + (1 - T)Wn+1 - Wl + (T - 1)W0
— T r+s—1 '

(b) If(r—s+1)(r+s—1) 0 then

n

Z Wor — (1= 8)Wanyo +rsWapi1 + (s — 1)Wo — rsWi + (r* — 5% +2s — 1)Wo
- (r—s+1)(r+s-—1) '

=0

(¢) If(r—s+1)(r+s—1)#0 then

zn: Wois1 = TWanta + (s — 5 )Want1 —rWa 4 (r’ + s — )W)
s 2741 — (T*S+1)(T+371) .

Proof. This is given in [6].

The following theorem presents some summing formulas of generalized Fibonacci numbers with
negative subscripts.

Theorem 1.2. Forn > 1 we have the following formulas:

(a) (Sum of the generalized Fibonacci numbers with negative indices) If r + s — 1 # 0, then

Zn:W - —(r4+$)W_opn1 —sW_p o+ Wi + (1 —r)Wo
i=1 o r+s—1 .
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(b) If(r—s+1)(r+s—1)#0 then

i W0 — (s = D)W g —15W_on_1 4+ rWi + (1 — s —r2)Wo
i=1 . (r—s+1)(r+s-1) :

() If(r—s+1)(r+s—1)+#0 then

i Wit = —1Woon + (57 = $)Woan_1 + (1 — 5)Wi + rsWy
P —2i+1 — (T—s—i—l)(r—i—s—l) .

Proof. This is given in [6].

In this work, we investigate some summation formulas of generalized Fibonaci numbers. We present
some works on summing formulas of the numbers in the following Table 2.

Table 2. A few special study of sum formulas

Name of sequence Papers which deal with summing formulas
Pell and Pell-Lucas [71, (81, [9]
Generalized Fibonacci [10],[6]
Generalized Tribonacci [11],[12],[13],[14]
Generalized Tetranacci [15],[16], [17]
Generalized Pentanacci [18],[19]
Generalized Hexanacci [20]

2 SUMMING FORMULAS OF GENERALIZED FIBONACCI
NUMBERS WITH POSITIVE SUBSCRIPTS

The following theorem presents some summing formulas of generalized Fibonacci numbers with
positive subscripts.
Theorem 2.1. Forn > 0 we have the following formulas:
(@) Ifr+s—1+#0,then
n ) B Al
2 W=
where
A1 = (r=2)4+(s+r—1)n)Wyia + ((—7’2 +2r—s—1)—(r—-1)(r+s—1)n)Wnpt1
+(1 4 s)W1 + s(2 — r)Wo.

(b) If(r—s+1)(r+s—1)#0 then

— A
S
(r—s+1)°(r+s—1)

i=0
where
Ay = (A=s)(r—s+1)(r+s—1)n—(r’s+s> —25+1))Wany2
+rs((r—s+1)(r+s—1)n+r°+2s — 2)Wani1
+r(1 — 5 YW1 + s(r’s + s* — 25 + 1)W.
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() If(r—s+1)(r+s—1)#0then

n

. Ag
ZWi =
2 = T e 1
where
As = r((r—s+1)(r+s—1)n+s>—1)Wanio
+(s(1=s)(r+s—1)(r—s+Dn—sr’s+s> —2s+1))Wani1
+(s* + 7% = 25 4+ §)W1 + rs(1 — s°)Wo.
Proof.

(a) Using the recurrence relation
Wn - Tanl + SWn72

ie.
sWp—o =W, —rWn_1
we obtain
snWy, = nWhpya —rnWhia
s(n—=1)Wp_1 = (n—1)Wnps1 —r(n—1)W,
s(n—=2)Wp_2 = (n—2)W, —r(n—2)Wy_1
s(n—=3)Wp_z3 = (n—3)Wnp_1—1(n—3)W,_s
sbWs = B5Wr —rbWs
saWy = 4Ws — rdWs
s3W3 = 3Ws —r3W,
$2Wy = 2Wy —r2Ws
sWi = Wi —rWs

If we add the equations by side by, we get

n n-+2 n+1
s iWi=Y (i-2)Wi—r> (i— )W, (2.1)
i=0 =3 =2
for n > 0. Note that
n+2 n n
S E—2Wi = Wi42Wo+ (n—D)Wapr +nWaia+ Y iW; =2 W,
i=3 =0 =0

n+1 n n
> - 1w Wo +nWair + > iW; = Y Wi

i=2 =0 =0

If we put them in (2.1) then it follows that

(7‘+S*1)Z7jWi:W1+2W()*TWO+(n*T’ﬂf1)Wn+1+an+2+(T*2)ZW¢

=0 =0

for n > 0. Then, if we use Theorem 1.1 (a), the required results of (a) follows.
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(b) and (c) Using the recurrence relation

Wn = TWn—l + SWn—Q

i.e.
rWpo1 =W, —sWy_o
we obtain
rmWont1 = nWapgpo — snWay,
r(n—1)Wa1 = (n—1)Wan —s(n—1)Wa, 2

7“4W9 4W10 — S4Wg

T3W7 = 3W8 — 83W6

r2Ws = 2Ws — s2Wy

TWg = W4 — SW2
rx0xW; = 0xWy—sx0xWy

Now, if we add the above equations by side by, we get

n n+1 n
TZiW2i+l = Z(’L — 1)W21' — S ZiWQi (22)
1=0 =1 1=0
for n > 0. Note that
n+1 n n n
Z(Z — 1)Wo; = Wo + nWanqo + Z(l — 1)Wa; = Wo + nWapyo + ZiWQi — Z Was.
=1 1=0 1=0 =0
If we put this in (2.2) we obtain
r Z iW2¢+1 =Wy + nW2n+2 +4 (1 — S) Z iWo; — Z Wa; (23)
=0 1=0 1=0

for n > 0. Similarly, using the recurrence relation

Wp =rWho1 + sWh_o

TWho1 =Wy — sWh_o = W, = Wiyt — sWho1 = 7Wap = Want1 — sWapo1

we write the following obvious equations;

r(n —+ 1)W2n+2
rnWan
r(n — 1)W2n72

r4Wyg
r3Ws
r2Wy

rWa
rx0x Wy

(n+ 1)Wanys — s(n+ 1)Wania
nWani1 — snWapn_1
(n — 1)W2n71 — 8(71 — 1)W2n73

4W9 — 84W7

3W7 — 83W5
2W5 — 82W3
W3 — SW1

Ox Wy —sx0x W_q
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Now, if we add the above equations by side by, we obtain

n n n—1
r ZiWQi = ZiWQz‘Jrl — S Z (’L =+ 1)W2i+1 (24)
1=0 1=0 1=—1
for n > 0. Note that
n—1 n n
Z 1+ 1) Waip1 = —(n+1)Wapy1 + ZiW%H + Z Wait1
i=—1 i=0 i=0
If we put this in (2.4) we obtain
r Z iWa; = (1 — S) Z iW2¢+1 +4 s(n =+ 1)W2n+1 — S Z W2i+1 (25)
=0 1=0 1=0

for n > 0. Then, using Theorem 1.1 (b) and (c) and
Wo = (rWh + sWhp)
and solving the system (2.3)-(2.5), the required result of (b) and (c) follow.
Taking r = s = 1 in Theorem 2.1 (a), (b) and (c) we obtain the following proposition.

Proposition 2.1. Ifr = s = 1 then forn > 0 we have the following formulas:

(a) Z?:O iW; = (n - 1) Wit — Wiyt +2W1 + Wo.

(b) >0 Wi = —Wanyo + (n+ 1) Wapy1 + Wo.

(c) Z?:o tWait1 = nWapyo — Wang1 + Wi

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci
numbers (take W,, = F,, with F, =0, F; = 1).

Corollary 2.2. Forn > 0, Fibonacci numbers have the following properties:

(a) Z?:O 1F; = (n — 1) F7L+2 — Fn+1 + 2.

(b) Z?:o iF2; = —Fonq2 + (n+ 1) Fany1.

() >0 giF2i1 = nFong2 — Fong1 + 1.

Taking W,, = L,, with Lo = 2, L; = 1 in the last proposition, we have the following corollary which
presents sum formulas of Lucas numbers.

Corollary 2.3. Forn > 0, Lucas numbers have the following properties:

(a) Z?:O iL; = (n — 1) Ln+2 — Ln+1 + 4.

(b) >0 iLlei = —Lonya+ (n+1) Lany1 + 2.

(c) E?:o tL2i41 = nlont2 — Lont1 + 1.

Taking » = 2,s = 1 in Theorem 2.1 (a), (b) and (c) we obtain the following proposition.

Proposition 2.2. Ifr = 2,s = 1 then forn > 0 we have the following formulas:
@ XL iWi= 5(nWaya — (1 +n)Wps + Wi).

(b) >0 iWai = 3 (~Wani2 +2(n + 1)Wany1 + Wo).

(€) >0 iWaiy1 = 2(2nWanio — Wang1 + Wh).
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From the last proposition, we have the following corollary which gives sum formulas of Pell numbers
(take W,, = P,, with Py =0, P, = 1).

Corollary 2.4. Forn > 0, Pell numbers have the following properties:

(a) Z?:O 1P = %(TLPTH_Q — (1 =+ n)Pn+1 —+ 1)

(b) >0 iPe = %(*P2n+2 +2(n+1)Pony1).

() >r jiP2iy1 = i(QnP2n+2 — Pony1 +1).

Taking W,, = Q. with Qo = 2,Q1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of Pell-Lucas numbers.

Corollary 2.5. Forn > 0, Pell-Lucas numbers have the following properties:

(a) Z?:o ZQZ = %(nQn+2 - (1 + n)Qn+l + 2)'

(b) X7 iQ2i = 3 (—Q2n+2 +2(n + 1)Qant1 + 2).

(€) Y oiQait1 = 1 (2nQant2 — Qant1 +2).

lfr=1,s=2then (r—s+1)(r+s—1) = 0 so we can't use Theorem 2.1 (b) and (c), directly.
However, we can find 7  iWa2; and Y 7 iW241 using mathematical induction which is given in
the following theorem.

Theorem 2.6. Ifr = 1,s = 2 then for n > 0 we have the following formulas:

(@ Y0 iWi = 2((2n — 1)Whyo — 2Wii1 + 3W1 + 2W0).

(b) >0 iWai = 25 ((4 4 21n)Wan 2 — 2(10 + 3n)Wani1 + 8(2W1 — Wo) — 9(W1 — 2Wo)n?).

(€) >0 iWaiy1 = 25 ((8 4 15n)Wapga + 2(—20 + 21n) Wani1 + 16(2W1 — Wo) + 9(W1 — 2Wo)n?).
Proof. (b) and (c) can be proved by mathematical induction.

(a) Takingr =1,s=2in Theorem 2.1 (a) we obtain (a).

(b) The proof will be by induction on n. Before the proof, we recall some information on generalized
Jacobsthal numbers. A generalized Jacobsthal sequence {W, }n>0 = {Wa(Wo, W1)}n>o is
defined by the second-order recurrence relations

Wyp =Who1 +2Wh_o; Wo=a, W1 = b7 (n > 2) (26)
with the initial values Wy, W1 not all being zero. The sequence {W,},.>o can be extended to
negative subscripts by defining

1 1
Won ==5W_tn-1) + gW-(n-2)

forn = 1,2, 3,.... Therefore, recurrence (2.6) holds for all integer n. The first few generalized
Jacobsthal numbers with positive subscript and negative subscript are given in the following
Table 3.

Table 3. A few generalized Jacobsthal numbers

n Wha W_n

0 Wo

1 W1 —3Wo + W1
2 2Wo+ Wi 3Wo — 1w
3 2Wo + 3Wh —gWO—f—%Wl
4 6Wo+5W W — =W
5 10Wo+11Wi -3 Wo+ 5Wh
6 22Wo+21W1  EWo— ZW,
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Binet formula of generalized Jacobsthal sequence can be calculated using its characteristic
equation which is given as
P —t—2=0.

The roots of characteristic equation are
a=2, f=-1
and the roots satisfy the following
a+p=1, af=-2, a—=3.

Using these roots and the recurrence relation, Binet formula can be given as

Aa™ — B"  Ax2"— B(-1)"
a—p o 3

where A =W, —Woﬂzwl—‘rWo and B =W; — Woa = Wy — 2W,.
We now prove (b) by induction on n. If n = 1 we that the sum formula reduces to the relation

W, = (2.7)

Wa = (4421 x 1)Wa — 2010 + 3 x 1)Ws +8Q2W1 — Wo) — (W, — 2W0)).  (2.8)

T 54
Since
Ws = (2W0 + Wl),
Ws = (2Wy + 3W1),
Wy = (6Wo +5W1),

(2.8) is true. Assume that the relation in (b) is true for n = m, i.e.,

m 1
> iWai = o7 (4 21m)Wam 2 = 2(10 + 3m)Wap i1 + 8(2W1 — Wo) — 9(Wh — 2Wo)m?)

=1

Then we get
m—+41 m
ST iWa = (m+D)Wamgo + > iWy
1=1 =1
= (m+1)Wapmio + 5%1((4 +21m)Wap, 42 — 2(10 + 3m)Wapm 41
+8(2W1 — Wo) — 9(W1 — 2Wo)m?)
= 5%((58 + 75m)Wapm g2 — 2(10 + 3m)Wap, 1 + 8(2W1 — Wo) — 9(Wy — 2Wo)m?)
= (B8 TS Wam gz — 210+ 3m)Wam 1 +9 (Wi — 2Wo) (1 + 2m)
+8(2W1 — Wp) — 9(W1 — 2Wo)(m + 1)%)
= (A 210m + 1) Wamga — 210+ 3(m + 1)) Wam 15 + 8(2W1 — Wo) — 9(Wy — 2Wo)(m + 1)°)
= (A 21m o+ D)W1) 12 — 2010 +30m + 1) Wa(m i1y 41
+8(2W1 — Wp) — 9(W1 — 2Wo)(m + 1)%)
where

(58+75m)Wap 4o —2(10+3m)Wap, 1 +27 (W1 — 2Wo) = (4+21(m+1))Wamta —2(10+3(m+1))Wap, 4 3. (29)

Note that (2.9) can be proved by using Binet formula of W,,. Hence, the relation in (a) holds
also forn =m + 1.
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(c¢) We now prove (c) by induction on n. If n = 1 we see that the sum formula reduces to the relation

1
W3 = a((g + 15)Wy + 2(—20 + 21)W3 + 16(2W1 — Wo) + 9(W1 — 2Wp)). (2.10)
Since
Wiy = (2Wo + 3W1)
Wy = (6Wo + 5W71)

(2.10) is true. Assume that the relation in (c) is true forn = m, i.e.,

m

, 1
D Wi = o7 (8 15m)War 2 +2(=20+21m) Wap 41+ 16(2W1 = Wo) +9(Ws —2Wo)m?)
=0
Then we get
m—+1

m
iWait1 (m+ D)Wamys + > iWaiq1
i=0 i=0

= (m+1)Wapmys + 5—14«8 + 15m) Wap g2 + 2(—20 + 21m) Wap, 1
+16(2W — Wo) + 9(Wy — 2Wo)m?2)
= 5%(54(m + 1)Wapmts + (8 + 15m)Wap 4o + 2(—20 + 21m)Wap, 41 — 9 (2m + 1) (W1 — 2Wp)
+16(2W1 — Wo) + 9(W1 — 2Wo)(m + 1)°)
= (150 + 1) Wampa +2(-20+ 21(m + 1)) Wam s
+16(2W — Wo) + 9(Wy — 2Wo)(m + 1)7)
= 5%((8 +15(m 4+ 1) Wa(pp1)42 + 2(=20 + 21(m + 1) Wa (1) 41
+16(2W1 — Wo) + 9(Wy — 2Wp)(m + 1)?)
where
54(m + 1)Wapm43 + (8 4+ 15m)Was, 42 + 2(—20 + 21m)Wap, 11 — 9 (2m + 1) (W1 — 2Wp) (2.11)
= (84 15(m + 1))Wap44 +2(—20 4 21(m + 1)) Wapp4 3.
(2.11) can be proved by using Binet formula of W,,. Hence, the relation in (c) holds also for
n=m-+ 1.
From the last theorem we have the following corollary which gives sum formulas of Jacobsthal
numbers (take W,, = J,, with Jo =0, J; = 1).
Corollary 2.7. Forn > 0, Jacobsthal numbers have the following property:
(@ Y0 o idi=3((2n—1)Jny2 — 2Jny1 + 3).
(b) >0 iJ2i = 25 (44 21n)J2nt2 — 2(10 + 3n)J2ni1 + 16 — 9n?).
(€) 30 yidzivt = 25 ((8+ 15n)Jansa + 2(—20 + 21n) Jans1 + 32 + 9n?).
Taking W,, = j, with jo = 2,51 = 1 inthe last theorem, we have the following corollary which presents
sum formulas of Jacobsthal-Lucas numbers.
Corollary 2.8. Forn > 0, Jacobsthal-Lucas numbers have the following property:
(@ Yigiji = 3((2n — Vjnt2 — 2jni1 + 7).
(b) >0 o ijai = 21 (4 + 21n)jany2 — 2(10 + 3n)jan 41 + 27n7).
(©) X0 yijait1 = 27 ((8+ 15n)jant2 + 2(—20 + 21n)jan 1 — 270%).

53



Soykan; AJARR, 8(1): 45-61, 2020; Article no.AJARR.54108

3 SUMMING FORMULAS OF GENERALIZED FIBONACCI
NUMBERS WITH NEGATIVE SUBSCRIPTS

The following theorem presents some summing formulas of generalized Fibonacci numbers with
negative subscripts.

Theorem 3.1. Forn > 1 we have the following formulas:
(@) Ifr+s—1%#0, then

n

Ziwﬂ:iz
(r+s—1)

=1
where
Ay = —s((r+s—Dn+r+25)W_pno—((r+s—1)(r+s)n
+(r+8)? 4+ $)Won_1 + (14 5)Wi + s(2 — r)Wo.

(b) If(r—s+1)(r+s—1)#0then

> iWoai = ——
Py (r—s+1)°(r+s—1)

where

As = ((s—1)(r—s+1)(r+s—1)n—(s+r° -2 +5)W_a,
Hrs(—(r—s+1) (r+s—n+s" =)Wz,
+r(1 — s*)W1 + s(r’s + s — 25 + 1) W,

(c) If(r—s+1)(r+s—1)#0 then

n ) A6
ZZW—2i+1 = 2 2
= (r—s+1)"(r+s—1)
where
ANe = (—r(r—s+1)(r+s—1Dn+(2s°—r>—28)r)W_a,
+s((s—D(r—s+1)(r+s—1)n+2s —r> —s> —s)W_ 0,1
+(s* + 12 — 25 + 5)W1 + rs(1 — %) Wo.
Proof.

(a) Using the recurrence relation
W_onya = rXW_ppi+sxW_,

1
= W_,= _g X W—n+1 + EW—n+2

r 1
= Wo, = -5 X W_(no1) + EW—(n—2)

sW_, = W77L+2 - TW77L+1

or
1 T
W_n = EW7n+2 - gwfnmkl
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we obtain
sX(NM+2))xW_pno = (n+2)xW_p—rx(n+2)xW_,_
sx(n+)xW_py = R+ XxW_ppr—rx(n+1)xW_,
sxnxW_, = nxW_pp—rxnxW_,u
sXx (=1 xW_pt1 = (m=1)XW_pj3—rx(n—1)x W_p42
sX(M=2)xXxW_pt2o = m=2)XW_pja—7rx(n—2)x W_p43
sXbxW_s = bxW_g—rxbxW_y
sXx4dxW_y = 4xW_o—rx4dxW_s3
sx3xW_sg = 3xW_1—rx3xW_o
sX2xW_g = 2xWop—rx2xW_
sx1xW_1 = 1xW;—rx1xW.

If we add the equations by side by, we get

n n
s((n+DW_p_ 1+ +2)W_opn_o+ D> iW_;) = (Wi+2Wo+ D> (i+2)W_y)
i=1 =1

—r((n+2)W_p_1 + Wo + i(i +HW_;)

i=1

for n > 1. Note that since

zn:(z +2)W_; = Zn: iW_; +2 Zn: W_i,
i=1 i=1 i=1

> W, +iw_i,

=1 i=1 i=1

7
-T—V
=
A
[

we have

n
s((n+DW_p_1+(n+2)W_p_o+ D> iW_y)
=1

= (Wi+2Wo+ (D iW i +2% W) —r((n+2)W_p 1+ Wo+ (D iW_i+ > W_y))

i=1 i=1 i=1 i=1

for n > 1. Then, using Theorem 1.1 (a), the required results of (a) follows.

(b) and (c) Using the recurrence relation

W—n+2 = TW—n+1 +sW_,
TW_nit1 = W_piyo —sW_,
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we obtain
r X (n+1) XW_on_1 = (n+1) X W_9p, —s X (n+1) X W_on_o
T Xn X W72n+1 = nX W72n+2—8 XnXxXW_an

r X (TL—].) X W72n+3 = (’fL— 1) X W72n+4—8 X (n— 1) X W72n+2

r X (n72) X W72n+5 = (TL*Z) X W,2n+6fs X (TL*2) X W72n+4
rx3xW_s = 3xW_4—sx3xW_g
rx2xW_os = 2XxXW_ag—sx2xW_y
rx1lxW_; = 1xWy—sx1xW_s.

If we add the equations by side by, we get

TZiW72i+1 =(—(n+1)W_zp + Wo + Z(Z +1)W_2;) — SZiW—%
i=1

i=1 i=1

for n > 1. Since

n n

Z(l +DHW_y; = Z iW_o; + Z W_o;

i=1 =1 i=1
it follows that

TZiW_2i+1 = —(n + 1)W—2n =+ W() + (1 — S) Z’iW_Qi + Z W_Qi (31)
i=1 i=1 =1

for n > 1. Similarly, using the recurrence relation

W7n+2 - TW7n+l + SW7n

i.e.
TW7n+1 = W7n+2 —sW_n = TW72n+1 = W72n+2 —sW_an
= ™W_oont11=W_ony21—sW_2n 1
= W_oon =W_ony1 —sW_an 1
we obtain
rxXnXW_osy = nXxW_oogpy1r—sxnxW_ay_1
r X (n — 1) X W_2n+2 = (n — 1) X W_2n+3 — 8 X (n — 1) X W_2n+1
T X (n — 2) X W_2n+4 = (n — 2) X W_2n+5 — s X (n — 2) X W_2n+3
T X (n — 3) X W—2n+6 = (n — 3) X W_2n+7 — 8 X (n — 3) X W_2n+5
rx4dxW_g = 4dxW_7—sx4xW_g
rx3xW_.e = 3xW_5—sx3xW_7
rx2xW_y = 2xW_3—sx2xW_;s
rx1lxW_o = 1xW_1—sx1xW_3
rx0x W, = 0xW;—sx0xW_4
rx (=) x Wy = (=1)xWsz—tx(-1)x Wy
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If we add the equations by side by, we get

Tziwfzi = (Z iW_git1) — s(nW_2n—1 + Z(l - 1W_2i41)
i=1 i=1

- - im1

for n > 1. Since

n n

Z(Z —1)W_g;41 = Z'L‘W72i+1 — Z W_2i11
i=1

i=1 =1
it follows that

n

TZiW_zi = —snW_9,_1+ (1 — 8) ZiW_2i+1 + SZ W_2i+1 (32)

=1 i=1 =1
for n > 1. Then, using Theorem 1.2 (b) and (c) and solving system (3.1)-(3.2) the required
result of (b) and (c) follow.
Taking r = s = 1 in Theorem 3.1 (a), (b) and (c) we obtain the following proposition.

Proposition 3.1. /fr = s =1 then forn > 1 we have the following formulas:

(@ > W i=—2n+5)W_n1— (n+3)W_n_o +2W1+ Wo.

(b) Sor  iW_o; = —W_2, — nW_n,_1 + Wo.

(€) r W1 =—(n+1)Woop — W_on_1 + Wi

From the above proposition, we have the following corollary which gives sum formulas of Fibonacci
numbers (take W,, = F,, with F, =0, F; = 1).

Corollary 3.2. Forn > 1, Fibonacci numbers have the following properties.

(@ > iFi=—C2n+5)F n1—(n+3)F_n 2+2.

(b) >0 [ iF 9 =—F o —nF_9,_1.

(€) > iF o1 =—(n+1)Fop — Fon_1+1.

Taking W,, = L, with Lo = 2, L1 = 1 in the last proposition, we have the following corollary which
presents sum formulas of Lucas numbers.

Corollary 3.3. Forn > 1, Lucas numbers have the following properties.

(a) Z?:l iL_; = — (QTL =+ 5) L_p_1— (n + 3) L_,_o+4.

(b) >0 il 9 =—L_on—nL_2p_1+2.

() >0 il oip1=—(n+1)L oy —L_on_1+ 1.

Taking r = 2,s = 1 in Theorem 3.1 (a), (b) and (c) we obtain the following proposition.
Proposition 3.2. Ifr = 2,s = 1 then forn > 1 we have the following formulas:

@ X, iWoi=3(=(+3n)Won1 — 2+ n)Won_o + Wh).

(b) Y0 iW_ i = 2(—W_2n — 2nW_2,_1 + Wo).

(€) i iW_oit1 = 1(—2(1+n)W_2n — W_on_1 + Wh).

From the last proposition, we have the following corollary which gives sum formulas of Pell numbers
(take W,, = P, with P, = 0, P, = 1).

Corollary 3.4. Forn > 1, Pell numbers have the following properties.
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(@ >0 iPi=2(—=(54+3n)P_n_1— (2+n)Pop_a+1).

(b) Z?:l ’L‘P72~; = i(_P*Q" — ZnP,an).

(€) Y0 iPsiy1 = 2(—2(1+n)P_op — P_op_1 +1).

Taking W,, = Q. with Qo = 2,Q1 = 2 in the last proposition, we have the following corollary which
presents sum formulas of Pell-Lucas numbers.

Corollary 3.5. Forn > 1, Pell-Lucas numbers have the following properties.

@ X0, iQ-i = 5(~=(5+3n)Q-n-1— (2+n)Q-n-2+2).

(b) Y7, iQ-2i = ;(—Q-2n — 2nQ—2n-1 +2).

(©) Y iQ-2it1=5(—2(14+1n)Q-2n — Q-2n-1+2).

Ifr=1,s=2then (r—s+1)(r+s—1) = 0 so we can't use Theorem 3.1 (b) and (c), directly.

However, we can find 7", iW_»; and Y- | i{W_2;11 using mathematical induction which is given in
the following theorem.

Theorem 3.6. Ifr =0,s = 2,t =1 then forn > 1 we have the following formulas:

(@ Y iW_i=23(—(6n+11)W_pn_1 —2(2n+5) W_pn_2 + 3W;1 + 2Wp).

(b) >0 iW_oi = (= (84 3n)W_2n — 2(16 + 15n)W_gn_1 + 8(2W1 — Wo) — 9(W1 — 2Wo)n?).
(©) 0 iW_sit1 = 2 (—(16+33n)W_2s —2(32+3n)W_2n—1 + 16(2W1 — W) + 9(W1 — 2Wo)n?).
Proof. (b) and (c) can be proved by mathematical induction.

(a) Takingr =1,s=2in Theorem 3.1 (a) we obtain (a).

(b) The proof will be by induction on n. If n = 1 we see that the sum formula reduces to the relation

1
W_o = ﬁ(—(S + 3)W72 — 2(16 + 15)W73 + 8(2W1 — Wo) — 9(W1 — 2Wo)). (33)
Since
3 1
Weo = (3Wo— W)
5 3
W_s = (7§Wo + §W1)

(3.3) is true. Assume that the relation in (b) is true for n = m, i.e.,

m 1
D Wy = =7 (- B+ 3m)Woam —2(16 +15m)W 201 +8(2W1 — Wo) — 9(W1 — 2Wo)m?).
i=1
Then we get
m—+1

Z iW_ai = (m+1)W_omir) + ZiW,Qi
i=1 i=1
1
= (m + 1)W72m72 + a(_(8 + 3m)W72m — 2(16 + 15m)W,2m,1
+8(2W1 — Wo) — 9(W1 — 2Wo)m2)
- 5%(7(8 4 3m)Weam — 216 + 15m)Woam1 + 54(m + )W
+9 (W1 — 2Wo) (2m + 1) + 8(2W1 — W) — 9(W1 — 2Wo)(m + 1)7)

+
o
©
=
\
5
[
©
=
\
o
5
s
+
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where
—(84+3m)W_o,, —2(16 + 15m)W_g,,_1 + 54(m + DH)W_op_o + 9 (W1 — 2Wp) (2m + 1) (3.4)
= —(B+3(m+1)W_apm_2 —2(16 + 15(m + 1))W_2/n_3.
(3.4) can be proved by using Binet formula of W,,. Hence, the relation in (b) holds also for
n=m+ 1.

(c¢) We now prove (c) by induction on n. If n = 1 we see that the sum formula reduces to the relation

W_1 = i(—(16-!—33 X 1)W_2—2(3243x 1)W_3+16(2W1 — Wp) +9(W1 — 2W)y) X 12) (3.5)

54
Since
1 1
W_, = (—§W0+§W1)
3 1
W_o = (ZWO_ZWI)
5 3
W_s = (—=Wo+ =W
3 ( 3 0+8 1)

(3.5) is true. Assume that the relation in (c) is true for n = m i,e.,

m

1
D W osig1 = — (—(16433m)W_2p, —2(3243m) W1 +16(2W1 —Wo ) +9(W1 —2Wo)m?).

p 54
Then we get
m—+1 m
ST iW_gip1 = (m+DWeoom_1+ » iW_gi41
=1 1=1
1
= (m+1)W_2pm_1+ ,*4(*(16 +33m)W_op, — 232+ 3m)W_opp, 1
sl
+16(2Wy — Wo) + 9(Wy — 2Wo)m?)
1
= 5—4(7(16 +33m)W_om +2(24m — 5) W_op—1 — 9 (2m + 1) (W — 2Wy)
+16(2W — Wo) + 9(Wy1 — 2Wo)(m + 1))
1
= a(*(l6 +33(m + 1)W_2m—2 —2(32+ 3(m + 1))W_2,, 3 + 16(2W1 — Wp)
+I(W — 2Wo)(m + 1)?)
1
= a(*(lﬁ +33(m + 1)W_o(mq1) — 2032+ 3(m + 1)W_spny1)—1 + 16(2W1 — Wo)
+9(W1 — 2Wp)(m + 1)?)
where

—(16 + 33m)W_2,, +2(24m — 5) W_2p—1 — 9 (2m + 1) (W1 — 2W,)  (3.6)
= —(16433(m+1))W_om—2—2(32+3(m+ 1))W_om_3.

(3.6) can be proved by using Binet formula of W,,. Hence, the relation in (c) holds also for
n=m+ 1.

From the last theorem, we have the following corollary which gives sum formula of Jacobsthal numbers
(take W,, = Jp, with Jo =0, J1 = 1).

Corollary 3.7. Forn > 1, Jacobsthal numbers have the following property:

59



Soykan; AJARR, 8(1): 45-61, 2020; Article no.AJARR.54108

(@ Yo iJi=3(—(6n+11)J_n1—2(2n+5)J_n_2+3).
(b) >0 iJ 2 = & (—(8+3n)J_2n — 2(16 + 15n)J_2n_1 + 16 — 9n?).
(€) 0 i 241 = 25 (—(16 + 33n)J_2n — 2(32 + 3n)J_2n—1 + 32 + 9n?).

Taking W,, = jn With jo = 2,1 = 1 in the last theorem, we have the following corollary which presents
sum formulas of Jacobsthal-Lucas numbers.

Corollary 3.8. Forn > 1, Jacobsthal-Lucas numbers have the following property:
(a) Z?:1 Z]*L = i(_ (6n + 11) j*’ﬂfl -2 (277‘ + 5) jf'n72 + 7)

(b) >0 ij-2i = & (—(8+3n)j_2n — 2(16 + 15n)j_2n_1 + 27n0%).

(€) Y0 ij—2it1 = 25 (—(16 4 33n)j_2n — 2(32 + 3n)j_2n—1 — 270°).
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