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Abstract

An approximate solution is obtained of the steady, laminar three-dimensional flow for an
incompressible, viscous fluid past a stretching sheet using the Spectral Adomian Decomposition
Method (SADM). The governing partial differential equations are transformed into ordinary
differential equations using suitable transformations. A comparison between the obtained results
with solutions obtained early in the literature and the numerical solution has been made to test
the validity, accuracy and convergence of the SADM. The effects of physical parameters on the
velocity are determined and discussed.
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1 Introduction

There has been growing interest in Magneto-hydrodynamics (MHD) flow through porous medium
due to the fact that fluid metals are electrically conducting and possess thermal properties also.
Recently, this type of the fluid flow has received attention of many researchers due to its applications
in technological models such as MHD generator and plasma studies. In view of its importance in
polymer industry, the flow due to a stretching sheet has been received attention and extensively
studied since [1] gave the closed form solution for the two-dimensional flow. The effect of heat
transfer on the two-dimensional flow due to stretching of a sheet have been studied by several
researchers (see [2, 3, 4, 5, 6]). [7] studied the more general three-dimensional flow. He derived a
perturbation solution around the two-dimensional flow, and he used this derivation as a guideline for
obtaining the numerical solution of the fully generalized problem. He mention a related axisymmetric
exact solution of the Navier-Stokes equations. Besides [7], the solution of the generalized three-
dimensional flow past a stretching sheet has been discussed by [8], he used the Ackroyd method [9]
of an infinite series of negative exponentials. [10] applied the technique of [11] which generates the
solution non-iteratively. [12, 13] studied nanoparticle involving solar radiation and solar collector
with turbulator involving nanomaterial turbulent regime.

In the present work we extend the steady, laminar three-dimensional flow of a viscous, incompressible
fluid due to a stretching sheet in a porous media considering the MHD on the flow and attempt
to obtain its solution using the Spectral Adomian Decomposition Method (SADM). The SADM
method can be used in place of traditional numerical methods such as finite differences, Runge-
Kutta shooting methods, finite elements in solving non-linear boundary value problems.

2 Mathematical Formulation

Consider a three-dimensional boundary layer flow of an incompressible elastico-viscous fluid over
a stretching sheet in porous medium. We consider a magnetic field which is not considered for
small magnetic Reynolds number. Under the above assumptions, the governing equations for this
problem can be written as follows [7]
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in which (u, v, w) denote the velocity components in the (x, y, z) directions, respectively, k∗ is the
permeability of the porous medium, σ is the electrical conductivity, ν = µ

ρ
is the kinematic viscosity,

B2
0 is the uniform magnetic field, and ρ is the density of the fluid. The boundary conditions are

taken as follows:

u = uw(x) = ax, v = vw(y) = by, w = 0, at z = 0,
u → 0, v → 0, as z → ∞,

}
(4)

where a and b are the constants of proportionality. Using the similarity variables

u = axf ′(η), v = ayg′(η), w = −
√
aν(f(η) + g(η)), η = z

√
a

ν
, (5)
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the continuity equation (1) is automatically satisfied and the system of partial differential equations
(2) and (3) is converted into ordinary differential equations

f ′′′ + (f + g)f ′′ − f ′2 −Kf ′ −M2f ′ = 0, (6)

g′′′ + (f + g)g′′ − g′2 −Kg′ −M2g′ = 0, (7)

where the prime symbol represents the derivative with respect to η and K =
ν

k∗a
is the permeability

parameter, M2 =
σB2

0

aρ
is the Hartman number. The corresponding boundary conditions are

f(0) + g(0) = 0, f ′(0) = 1, g′(0) = β,
f ′(η) → 0, g′(η) → 0 as η → ∞,

}
(8)

where β = b
a
is a ratio parameter.

3 Fundamentals of Adomian Decomposition Method
(ADM)

In this section, the review of the standard Adomian decomposition method [14, 15, 16, 17] is
presented.We start by considering the following differential equation

Lu(x) +Ru(x) +Nu(x) = g(x); (9)

where L is the highest-order derivative which is assumed to be invertible, R is a linear differential
operator of less order than L, Nu represents the nonlinear terms,and g(x) is known analytic function.
The method is based on applying the inverse operator L−1 formally to the expression

Lu(x) = g(x)−Ru(x)−N(u(x)). (10)

So, by using the given conditions we obtain

u(x) = f(x)− L−1(Ru(x))− L−1(N(u(x))), (11)

where the function f(x) represents the terms arising from integrating the source term g(x) and from
using the given conditions, all are assumed to be prescribed. The standard Adomian decomposition
method defines the solution u(x) by the series

u(x) =

∞∑
i=0

ui(x), (12)

where the components u0, u1, u2, ..., are usually determined recursively by using the relation

uk+1 = −L−1(Ruk)− L−1(Nuk), k ≥ 0. (13)

It is important to note that the decomposition method suggests that the zeroth component u0 is
usually identified by the function f described above. For nonlinear equations, the nonlinear operator
Nu = F (u) is usually represented by an infinite series of the so-called Adomian polynomials

F (u) =

∞∑
k=0

Ak, (14)

where Adomian polynomials An may be computed by the formula

An =
1

n!

[
dn

dλn
N

(
n∑

i=0

λiui

)]
λ=0

. (15)
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4 Spectral Adomian Decomposition Method (SADM)

In this section, we will apply the SADM to solve the system of equations (6) and (7) together with the
boundary conditions (8). The technique is based on the blending of the Chebyshev pseudospectral
methods and the Adomian decomposition method. The physical region [0,∞] is transformed to the
region [−1, 1] by using the mapping

η

L
=

x+ 1

2
, − 1 ≤ x ≤ 1. (16)

We discretize the domain [−1, 1] using the Gauss-Lobatto collocation points given by

x = cos
πj

N
, j = 0, 1, 2, . . . , N, (17)

where N is the number of collocation points used. It is also convenient to make the boundary
conditions homogeneous by making use of the transformations

f(η) = fi(η) +

i−1∑
m=0

fm(η), g(η) = gi(η) +

i−1∑
m=0

gm(η), (18)

where fm(η) and gm(η) are chosen so as to satisfy boundary conditions (8). Substituting equations
(16) and (18) in equations (6) and (7) gives

8
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subject to the boundary conditions

fi(−1) = f ′
i(−1) = f ′

i(1) = gi(−1) = g′i(−1) = g′i(1) = 0, (21)

where

R1 = M2f ′
m +Kf ′

m − fmf ′′
m + f ′

m
2 − f ′′

mgm − f ′′′
m , (22)

R2 = M2g′m +Kg′m − fmg′′m − gmg′′m + g′m
2 − g′′′m . (23)

The initial approximations f0(x) and g0(x) for the SADM solution of equations (19) and (20) are
obtained by solving the linear part of (19) and (20), namely

8
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L3
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4

L2
(fm + gm) g′′i − 2

L

(
2g′m +K +M2) g′i + g′′mgi + g′′mfi = R2, (25)

subject to the boundary conditions

f0(−1) = f ′
0(−1) = f ′

0(1) = g0(−1) = g′0(−1) = g′0(1) = 0. (26)

The system of equations (24) and (25) is solved using the Chebyshev pseudospectral method
where the unknown functions f0(x) and g0(x) are approximated as truncated series of Chebyshev
polynomials of the form

fi(x) ≈
N∑

k=0

fi(xk)Tk(xj), gi(x) ≈
N∑

k=0

gi(xk)Tk(xj), j = 0, 1, . . . , N, (27)
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where Tk is the kth Chebyshev polynomial given by

Tk(x) = cos
[
k cos−1(x)

]
. (28)

The derivatives of the variables at the collocation points are represented as

drfi
dxr

=

N∑
k=0

Dr
kjfi(xk),

drgi
dxr

=

N∑
k=0

Dr
kjgi(xk), j = 0, 1, . . . , N, (29)

where r is the order of differentiation and D being the Chebyshev spectral differentiation matrix
whose entries are defined as ([18, 19, 20])

D00 =
2N2 + 1

6
,

Djk =
cj
ck

(−1)j+k

xj − xk
, j ̸= k; j, k = 0, 1, . . . , N,

Dkk = − xk

2(1− x2
k)

, k = 1, 2, . . . , N − 1,

DNN = −2N2 + 1

6
,


(30)

where c0 = cN = 2 and cj = 1 with 1 ≤ j ≤ N − 1. Substituting equations (27), (28), (29), (30)
and (17) into equations (24) and (25) leads to the matrix equation

AX0 = R0. (31)

In equation (31), A is a (2N +2)× (2N +2) square matrix and X0 and R0 are (2N +2)×1 column
vectors defined by

A =

[
A11 A12

A21 A22

]
, X0 =

[
f0
g0

]
, R0 =

[
r01
r02

]
, (32)

with

A11 =
8

L3
D3 +

4

L2
([fm] + [gm])D2 − 2

L

(
2[f ′

m] +K +M2)D + [f ′′
m],

A12 = [f ′′
m],

A21 = [g′′m],

A22 =
8

L3
D3 +

4

L2
([fm] + [gm])D2 − 2

L

(
2[g′m] +K +M2)D + [g′′m],

r01 = [R1(x0), R1(x1), . . . , R1(xN−1), R1(xN )]T ,

r02 = [R2(x0), R2(x1), . . . , R2(xN−1), R2(xN )]T ,

where T stands for transpose and [ · ] is a diagonal matrix of size (N+1)×(N+1). After modifying
the matrix system (31) to incorporate boundary conditions (26), the initial approximation solution
of (19) and (20) is obtained as

X0 = A−1R0. (33)

For the higher order approximations for the SADM solution of (19) and (20), one can can write
equations (19) and (20) using equation (10) as follows

A11fk+1 +A12gk+1 = − 4

L2

k∑
i=0

(
fi(D

2fk−i) + gi(D
2fk−i)− (Dfk−i)

2) = rk+1,1, k = 0, 1, 2, . . .

A21fk+1 +A22gk+1 = − 4

L2

k∑
i=0

(
fi(D

2gk−i) + gi(D
2gk−i)− (Dgk−i)

2) = rk+1,2, k = 0, 1, 2, . . .
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The above system of equations can be written as

AXk+1 = Rk+1, (34)

where

A =

[
A11 A12

A21 A22

]
, X0 =

[
fk+1

gk+1

]
, Rk+1 =

[
rk+1,1

rk+1,2

]
, (35)

subject to the boundary conditions

fk+1(−1) = f ′
k+1(−1) = f ′

k+1(1) = gk+1(−1) = g′k+1(−1) = g′k+1(1) = 0. (36)

After modifying the matrix system (34) to incorporate boundary conditions (36), the solution is
obtained as

Xk+1 = A−1Rk+1. (37)

Thus, starting from the first approximation f0 and g0, the higher-order approximation fk+1 and
gk+1 can be obtained through recursive formula (37). Now the final solution is given by

f(η) = fm(η) +

∞∑
i=0

fi(η), g(η) = gm(η) +

∞∑
i=0

gi(η). (38)

5 Results and Discussion

In this section we give the Spectral Adomian Decomposition method results for the main parameters
affecting the flow. The accuracy and efficiency of the solutions are demonstrated by comparing
the current results against the numerical solutions obtained using the MATLAB routine bvp4c.
In generating the presented results it was determined through numerical experimentation that
∞ ≃ L = 15 and N = 120 gave sufficient accuracy for the SADM.

In Table 1, the SADM results were compared with those reported by [7] and bvp4c numerical results
for −f ′′(0) and −g′′(0) for different values of β when M = 0, K = 0. It can be seen from the table
that the SADM method gives much more accurate results than those obtained by [7].

Table 1. Comparison between the SADM, [7] and numerical results for −f ′′(0) and
−g′′(0) for different values of β when M = 0, K = 0

−f ′′(0) −g′′(0)

β SADM [7] Numeric SADM [7] Numeric

0 1 1 1 0 0 0

0.25 1.048811 1.048813 1.048811 0.194564 0.194564 0.194564

0.5 1.093095 1.093097 1.093095 0.465205 0.465205 0.465205

0.75 1.134486 1.134485 1.134486 0.794618 0.794622 0.794618

1. 1.173721 1.173720 1.173721 1.173721 1.117372 1.173721

Tables 2 and 3 showed a comparison between the SADM and the numerical results of −f ′′(0) and
−g′′(0) at various values of K and M for different iterations of the SADM procedure. Convergence
of the SADM results to the numerical approximation is achieved starting form the seventh iteration
for six decimal places.
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Table 2. SADM results against numerical solution of −f ′′(0) at different values of K
and M when β = 0.5.

K M 4th iteration 5th iteration 6th iteration 7th iteration Numeric

0.1 1.141109 1.141116 1.141118 1.141118 1.141119

0.1 0.5 1.240024 1.240033 1.240036 1.240037 1.240037

1.0 1.510012 1.510021 1.510023 1.510024 1.510024

0.1 1.302091 1.302100 1.302103 1.302104 1.302104

0.5 0.5 1.390272 1.390282 1.390284 1.390285 1.390285

1.0 1.636448 1.636455 1.636457 1.636457 1.636457

0.1 1.480117 1.480126 1.480128 1.480129 1.480129

1 0.5 1.558599 1.558607 1.558609 1.558609 1.558609

1.0 1.782151 1.782156 1.782157 1.782157 1.782157

Table 3. SADM results against numerical solution of −g′′(0) at different values of K
and M when β = 0.5

K M 1st iteration 2nd iteration 3rd iteration 4th iteration Numeric

0.1 0.492892 0.492981 0.492997 0.493000 0.493001

0.1 0.5 0.549045 0.549207 0.549233 0.549238 0.549240

1.0 0.697498 0.697780 0.697811 0.697815 0.697815

0.1 0.583709 0.583911 0.583941 0.583946 0.583948

0.5 0.5 0.632354 0.632600 0.632633 0.632637 0.632638

1.0 0.765400 0.765695 0.765721 0.765722 0.765722

0.1 0.681319 0.681594 0.681626 0.681630 0.681630

1 0.5 0.723687 0.723976 0.724005 0.724008 0.724008

1.0 0.842786 0.843073 0.843091 0.843091 0.843091

Table 4. Absolute error norms values of f(η) and g(η) when M = 0.5,K = 0.5, β = 0.1 at
different order of iteration N

SADM

N f(η) g(η)

8 1.41043e− 7 4.28632e− 9

9 9.00603e− 8 4.46446e− 9

10 8.51249e− 8 4.58746e− 9

12 8.42685e− 8 4.62706e− 9

20 8.42241e− 8 4.62931e− 9
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In Table 4, we give the maximum absolute errors between the SADM and numerical solutions of f(η)
and g(η) for varied values of collocation points N . It is clear from the Table, the SADM results are
very accurate to the numerical solution because the errors are very small at the collocation points.

Figs 1 and 2 showed the influence of the various physical parameters M and K on f ′(η), g′(η) and
a comparison between the SLM and numerical results. In Fig. 1. we plotted the effect of various
values of the magnetic field M at fixed values of K. It is noted that M reduces the boundary
layer thickness. Fig. 2. represents the the effect of the permeability parameter K on dimensionless
velocity distributions f ′(η) and g′(η) when M is fixed. It shows that the velocities reduced as K
increased.
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Fig. 1. Comparison of the numerical results (circles) and SLM approximation for
f ′(η) and g′(η) for different values of M when K = β = 0.5
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Fig. 2. Comparison of the numerical results (circles) and SLM approximation for
f ′(η) and g′(η) for different values of K when M = β = 0.5

6 Conclusion

In this work we have investigated the MHD flow due to a stretching sheet in a porous medium. A
similarity transformation reduced the governing partial differential equations into ordinary differential
equations which were then solved using the SADM. The SADM procedure transforms the differential
equations into a system of algebraic equations which is easier and faster to solve.
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We found high convergence of the series solution and we have shown that the SADM gives good
accuracy and computational efficiency. The results indicate that an increases in the magnetic and
permeability parameters reduces the velocities profiles.
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