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Abstract: In this paper, new sufficient conditions are obtained for oscillation of second-order neutral delay

differential equations of the form & lr(t)dt [ (t) + p(t)x(t — T):| +q(H)G(x(t—o1)) +o(t)H(x(t — 02)) =

0, t> to, under the assumptions fooo % = o0 and f = d'7 < oo for |p(t)| < +oo. Two illustrative examples
are included.
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1. Introduction

T his article is concerned with sufficient conditions for oscillation of a nonlinear neutral second-order delay
differential equation

L) 220 +aOG (x(t — ) + 0O H(x(t—02) =0, t> 1y, <1>

where z(t) = x(t) + p(t)x(t — ) and p € PC([tp,o0),R). We also suppose that the following assumptions
hold:

(A1) 1,9,v € C([tg,0),[0,00)), T,01,02 € Ry and p = max{t,0q,02};
(A2) G, £ C(R,R) with uH(u) > 0 and yG(y) > 0 for u,y # 0;
(43) [y % =0

(As) Jy" 75y <o

Baculikova et al. [1] have considered the second order delay differential equation of the form

d

dt[ ()5 |70+ (x| | +a(x(e0) + o100 =, @

where 7(t),q(t),v(t) € C([ty, o)), r(t), p(t), T(t),o(t),n(t) € C'([ty,o0)) and established several sufficient
conditions for oscillation of solution of (2) for 0 < p(t) < oco. Li et al. [2] obtained sufficient conditions for
oscillation of solution of second order nonlinear neutral differential equations of the form

4 [r(t) & [w+pn-o)]

where p,q,7 € C([tp, +0), (0,400)) and v > 1 is the quotient of two odd positive integers. In [3], Santra has
consider first-order nonlinear neutral delay differential equations of the form

+q(t)f(x(t),x(o(t))) =0,

& [(t) + p(0)x(t )] + g(OH(x(t — ) = F(1 @)
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and
%ﬁﬁﬂﬂmwufrﬂ+ﬁﬂHQUf®):O @

and studied oscillatory behaviour of the solutions of Equation (3) and Equation (4), under various ranges of
p(t). Also, sufficient conditions are obtained for existence of bounded positive solutions of (3). Tripathy et al.
[4] have established several sufficient conditions for the oscillation of solution of the second order nonlinear
neutral delay differential equations of the form

d

a [r(t)jt X0+ pOx(0)] | +90)f (1)) =0

and

d

v
a [r(t) i [0+ p0x)] || + a0 ) o

where r,q,7,0 € C(Ry,R;), p € C(R4,R) and 1, B are quotient of odd positive integers. Motivated by the
above work, an attempt is made to study oscillatory behaviour of Equation (1) for |p(t)| < +o0. Here we are
connected with both (A3) and (Ay).

Neutral functional differential equations have numerous applications in several field of the science as,
for example, models of population growth and theory of population dynamics, fractal theory, nonlinear
oscillation of earthquake, diffusion in porous media, fractional biological neurons, traffic flow, polymer
theology, neural network modeling, fluid dynamics, viscoelastic panel in super sonic gas flow, real system
characterized by power laws, electrodynamics of complex medium, sandwich system identification, nuclear
reactors mathematical modeling of the diffusion of discrete particles in a turbulent fluid (see [5-7,9] and the
references cited therein). In last decades several results have been obtained on oscillation of nonneutral
differential equations and neutral functional differential equations (see [10-15] and the references cited
therein).

By a solution to Equation (1), we mean a function x € C([Ty,),R), Ty > to, which has the property
rz/ € C!([Ty,),R) and satisfies Equation (1) on the interval [Ty,o0). We consider only those solutions to
Equation (1) which satisfy condition sup{|x(t)| : t > T} > 0 for all T > T, and assume that Equation (1)
possesses such solutions. A solution of Equation (1) is called oscillatory if it has arbitrarily large zeros on
[Ty, 00); otherwise, it is said to be nonoscillatory. Equation (1) itself is said to be oscillatory if all of its solutions
are oscillatory.

2. Sufficient Conditions for Oscillation

In this section, sufficient conditions are obtained for oscillatory and asymptotic behaviour of second order
nonlinear neutral differential equations of the form (1).

Theorem 1. Let 0 < p(t) < p < 1,t € R. Assume that (Ay)—(As) hold. Furthermore assume that
(As) Gand H are nondecreasing and odd function
and

(Ag) [laln) + LoGn)ldy = oo, L= 29 > 0fore, T >0

hold. Then every solution of the equation (1) is oscillatory.

Proof. Suppose for contrary that x(¢) is a nonoscillatory solution of equation (1). Then there exists ty > p such
that x(t) > 0 or < 0 for t > ty. Assume that x(¢t) > 0, x(t — 7) > 0 and x(t — ) > 0 for t > t. From Equation
(1), it follows that

[r(H2' (D] = —q(1)G(x(t — 1)) —o()H(x(t — 7)) <O, (5)

hold for t > t; > ty. Consequently, r()z(t) is nonincreasing and z'(t), z(t) are of constant sign on [, c0) for
tp > t1. Letr(t)z/(t) < O for t > t,. Then we can find e; > 0 and a t3 > t; such that r(t)z/(t) < —é&; for
t > t3. Integrating the relation z/(#) < —% from t3 to (> t3) and obtain z(t) < z(t3) — €1 [ftg %] — —ooas
t — oo, a contradiction to the fact that z(t) > 0 for t > t;. Hence, r(t)z/(t) > 0 for t > t,. As a result, z(t) is
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nondecreasing on [fp, ). So, there exists ¢, > 0 and a t3 > tp such that z(t) > €, for t > t3. On the other hand,
z(t) is nondecreasing implies that

(1—p())z(t)

IN

z(t) — p(H)z(t = 1)
p(H)x(t = 1) = p(t)x(t — 1) = p(t)p(t — T)x(t — 27)
p(H)p(t — T)x(t —27) < x(t),

i

=2 =
—~
-~
~— —

I+

thatis, (1 — p)ex < x(t). Consequently, x(t) > & where (1 — p)ex = &€ > 0. Therefore, (5) can be written as

(7' (1) + G a() + Lo(t)] < 0.
We note that lim;_,« 7(£)z' (t) exists. Integrating the last inequality from t3 to (> t3), then
t
G(S)/t la(n) + Lo(m)dn < —[r(n)2 (n)]i, < oo, as t — o,
3

a contradiction due to the assumption (Ag).
If x(t) < 0 for t > ty, then we set y(t) = —x(t) for t > t( in (1) and using (As) we find

(r(O) @) +pBy(t = 1)) + ()G (y(t — 1) +o(HH(y(t — ) =0,
then proceeding as above, we find a same contradiction. This completes the proof of the theorem. [J

Theorem 2. Let1 < p(t) < p < oo, t € Ryand G(p) > H(p). Assume that (A1)—(As) and (As) hold. Furthermore
assume that there exists A,y > 0 such that

(A7) G(u)+G(s) > AG(u+s), H(u)+ H(s) > uH(u+s) foru,s € Ry,
(Ag) G(us) < G(u)G(s), H(us) < H(u)H(s) foru,s € Ry

and

(A9) [1Q0p) + LaV (n)]dy = oo, Ly = KEE > 0for T,e > 0

hold, where Q(t) = min{q(t),q(t — 1)}, V(t) = min{v(t),v(t — T) }. Then conclusion of the Theorem 1 is true.

Proof. Let x(t) be a nonoscillatory solution of Equation (1). Proceeding as in Theorem 1, we have two cases:
r(t)z'(t) < 0and r(t)z'(t) > 0fort € [tp, 00). The former case follows from Theorem 1. Let’s consider the later
case. As a result, z(f) is nondecreasing on [tp, ). So, there exists ¢ > 0 and a t3 > t, such that z(t) > ¢ for
t > t3. We note that lim;_,« 7(#)z’(¢) exists. From Equation (1), it is easy to see that

0 = (r®Z®) +q)G(x(t— 1)) +o(HH(x(t — 7)) + G(p)[(r(t — D)2 (t — 1))’
+q(t—1)G(x(t—T—0;)) +o(t—T)H(x(t — T — )],

in which we use (A7), (Ag) and z(t) < x(t) + px(t — T) to obtain

0 > (()’(t))' G(p)(r(t =02 (t = 1)) + QO [G(x(t — 1)) + Glpx(t — T — 01))]

+o(t)H(x(t — 02)) + G(p)v(t — T)H (x(t — T — 03))
> (r()2'(1) + G(p) (r(t = D2 (t = 1)+ AQOG[x(t — 1) + px(t — T — 1)
+o(t)H(x(t —02)) + G(p)o(t — T)H(x(t — T — 02))
> (r()2 (1) +G(p) (r(t = D)2 (t = 7))+ AQ()G (2(t — 1)) + 0(H)H (x(t — 02))
+H(p)o(t —1)H(x(t — T —02)),
thatis,
(r(H2 (1) + G(p) (r(t = )2 (t = 7)) + AQ(1)G(2(t — 1)) + uV () H(z(t — 02)) <0 (6)

for t > t3 > tp. Consequently,

(r(HZ' (1)) + G(p) (r(t —1)2'(t— 7)) + AQ(t)G(e) + uV (t)H(e) < 0.
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Integrating the last inequality from t3 to t(> t3), then

AGe) [ TQ0n) + Livnldy <~ [r)Z (], + G(p) [ty = )27~ D]}, <, a5 £ o0

3

a contradiction due to the assumption (Ag). The case x(t) < 0 is similar. Thus the theorem is proved. [

Theorem 3. Let —1 < p(t) < 0, t € Ry. If (A1)-(A3), (As) and (Ag) hold, then every unbounded solution of
Equation (1) oscillates.

Proof. Let on the contrary that x(t) be a unbounded solution of Equation (1) on [tp, ), tp > p. Proceeding
as in Theorem 1, it concludes that r(t)z(t) is nonincreasing and z(t), z’(¢) are monotonicon [t, ). Indeed,
z(t) < 0 fort > t3 implies that x(t) < x(t — 7), and hence

x(t) <x(t—71) <x(t—27) <..<x(t3),

that is, x(t) is bounded, which is absurd. Hence, z(t) > 0 for t > t3. Suppose that r(t)z'(t) > 0 for t > t3.
Clearly, z(t) < x(t) implies that

(r()Z' (1)) +q(HG(2(t — 7)) + v()H (2(t — 02)) <O %)

for t > t3. On the other hand, z(t) is nondecreasing implies that, there exist ¢ > 0 and a t; > t3 such that
z(t) > e for t > t4. Consequently, for t5 > t4 + 0, it follows from Equation (7) that

(r(1)2' (1)) +G(e)q(t) + H(e)u(t) <0, t > t5

Integrating the last inequality from f5 to t (> t5), we have
t
t
G(s)/t [9(7) + Lo(n)ldy < —[1(5)2/(s)]}, <o, as t — oo,
5
a contradiction to (Ag). Hence, r(#)z'(t) < 0 for t > t3. Rest of the theorem follows from Theorem 1. Thus, the

proof of the theorem is complete. [

Theorem 4. Let —1 < —p < p(t) < 0,t € Ry and p > 0. If all the assumptions of Theorem 3 hold, then every
solution of Equation (1) either oscillates or converges to zero as t — oo.

Proof. Proceeding as in the proof of Theorem 1, we have obtained Equation (5) and hence r(t)z/(t) is
nonincreasing on [t, o). Therefore, z(t) is monotonic on [t3,00), t3 > tp. So we have four cases namely:

1. z(t) >0, r(t)Z/(t) >0,
2. z(t) >0, r(H)Z(t) <0,
3. z(t) <0, r(t)Z(t) >0,
4. z(t) <0, r(HZ'(t) <0

Using the arguments as in the proof of Theorems 1 and Theorem 3, we get contradictions to (A3) and
(Ag) when the Case (2) and Case (1) respectively. Since z(t) < 0 implies that x(t) is bounded, that is, z(t) is
bounded, then the Case (4) is not possible due to Theorem 1 (. z/(t) < 0 implies that lim; ;e z(t) = —00).

Consequently, the Case (3) holds for t > t3. In this case, lim;_,« z(t) exits. As a result,

0 > limz(t) =limsupz(t) = limsup(x(t) + p(t) x(t — 7))

=0 t—oo t—o0

> limsup(x(t) — p x(t — 1))

t—ro0
> limsup x(t) + liminf(—px(t — 7)) = (1 — p) limsup x(¢)

t—o0 t—o0 t—roo
implies that limsup,_,, x(t) =0 [." 1 — p > 0] and hence lim inf;_, x(t) = 0. Thus lim;_,c x(t) = 0. The case
x(t) < 01is similar dealt with. This completes the proof of the theorem. [J
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Theorem 5. Let —oco < —p1 < p(t) < —pa < —1, p1, p2 > 0and t € R, Assume that (A1)—(A3z), (As) and (Ag)
hold. If

-1
(A10) [7 [a(n) + Lov(y)]dy = oo, Ly = % >0forT,p;y > 0and a <0,
1

then every bounded solution of Equation (1) either oscillates or converges to zero as t — oco.

Proof. Suppose on the contrary that x(t) is a solution of Equation (1) which is bounded on [ty, ), to > p.
Using the same type of reasoning as in Theorem 1, we have that z’(t) and z(t) are of one sign on [t, o) and have
four possible cases like as in Theorem 4. Case (2) and Case (4) are not possible because of (A3) and bounded
z(t). Case (1) follows from the proof of the Theorem 3. For the Case (3), we claim that lim; o z(t) = 0. If
not, there exists &« < 0 and t3 > t; such that z(t + T —07) < a and z(t + T — 02) < a for t > t3. Hence,
z(t) > p(t)x(t — T) > —p1x(t — T) implies that x(t — 071) > —p; '« > 0and x(t — 02) > —p;'a > Ofor t > t3.
Consequently, Equation (5) becomes

(r(0)2'(H)" + G(=py "a)q(t) + H(=py "a)o(t) <0 ®)
for t > t3. Integrating the last inequality from t3 to t(> t3), we get

G(—p;'a) /t:[q(n) + Lyo(y)]dy < —[r(s)zf(s)]; < o0, a5t — oo,

a contradiction to (Ajg). Ultimately, lim;_, z(t) = 0. Hence,

0 = tlggloz(t) = 11trgg1fz(t)
< Timi _ B
< htrgg\f(x(t) p2 x(t— 1))

IA

lim sup x(t) + h}gglf(—pz x(t—1))

t—o0

(1 — po) limsup x(t)

t—o0
implies that limsup,_, . x(t) = 0 [." 1 —po < 0]. Thus, liminf; ,c x(t) = 0 and hence lim; ;o x(f) = 0.
Therefore, any solution x(t) of Equation (1) converges to zero. The case x(t) < 0 is similar. This completes the
proof of the theorem. O

Remark 1. If we denote R(t) = [~ r‘?z) ,then (A4) implies that R(t) — Oast — oo, since R(t) is nonincreasing.

Theorem 6. Let0 < p(t) < p < oo, t € Ry and G(p) > H(p). Assume that (A1), (A2), (Asg), (As) and (A7)—(Ao)
hold. If

(A1) J7° i [F{Q@G(R(E — 1)) + LsV(§)H(eR(E — 02)) }E] dy = o0 for T, T1,C >0,

where Ly = £ > 0 then also conclusion of the Theorem 1 is true, where Q(t) and V (t) is defined in Theorem 2.
A

Proof. On the contrary, we proceed as in Theorem 1 to obtain Equation (5) for t > t; and r(#)z/(t) is non
increasing on [t, o), t; > t1. The case r(t)z/(t) > 0 for t > t( is same as in Theorem 2 and gives a contradiction
due to (Ag). Let’s suppose that r(t)z/(t) < 0, for t > t,. Therefore, for s > t > tp, r(s)z'(s) < r(t)z/(t) implies
that

Consequently,
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Because of r( ) (t) is nonmcreasmg, we can find a constant ¢ > 0 such that r(t)z/(t) < —efort > t,. Asa
result, z(s) —¢ f o) and hence 0 < z(t) — eR(t) for t > t,. Using the above fact in Equation (6), we get

(r(H2' (1) + G(p) (r(t = )2 (= 7))+ AQ(H)G (eR(t — 01)) + pV (D) H(eR(t — 72)) <0

for t > t3 > t,. Integrating the last inequality from t3 to t(> t3), we obtain

[r(mZ (N3, + Gp) [r(n =07 (1 = )], + A/ G(eR(n — 01)) + LsV () H(eR (1 — 02)) Jdyy <0,
that is,
A /t: [QUNG(eR(y —01)) + LaV () H(eR(y —02))]dy < =[r(n)Z (n) + G(p) (r(n — 02 (n — 1)) ];,
< -2 +Gp)(rt—1)Z(t—1))]
< —(1+G(p)rhz (1)

implies that

1+Ac(p)r<1t) /t:[Q(W)G(eR(ﬂ — 1)) + LaV () H(eR(y — 02)) ] dn < —2(£).

Again integrating the last inequality, we obtain that

t
ty"

1—|—G / M}{Q G(eR(C — (71))+L3V(C)H(R(§—a2))}d§] dy < —[z(n)]

Since z(t) is bounded and monotonic, then it follows that

[ s |16 (6RE = o0) + LaVOHR(E = o)) Y  dn <
a contradiction to (Aj11). The case x(t) < 0 is similar dealt with. This completes the proof of the theorem. [J

Theorem 7. Let —1 < p(t) <0, t € Ry. Assume that (A1), (Az) and (As4)—(Ag) hold. Furthermore assume that

(An) J7 i [ {a(©)G(eR(E — 1)) + 0(§)H(eR(G — 02)) }dg | dip = o0 for T, Ty, C > 0

hold. Then conclusion of the Theorem 3 is true.

Proof. The proof of the theorem follows from the proof of the Theorems 3 and 6 and hence the details are
omitted. [

Theorem 8. Let —1 < —p < p(t) < 0,t € Ry and p > 0. If all the conditions of Theorem 7 are satisfied, then
conclusion of the Theorem 4 is true.

Proof. The proof of the theorem follows from the proof of Theorems 4 and 7. Hence, the proof of the theorem
is complete. O

Theorem 9. Let —o0 < —p1 < p(t) < —pp < —1,t € Ry and py1, pa > 0. Assume that (A1), (Az), (As)—(Ae),
(A10> and <A12) hold. If

(A) I 0 [le{q {) + Lyo(Z) YdZ]dy = oo for T, Ty > O,

where Ly is defined in Theorem 5, then conclusion of the Theorem 5 is true.

Proof. Proceeding as in the proof of the Theorem 5 we have four possible cases for t > t,. First two cases are
similar to the proof of Theorem 8. Case (3) is similar to the proof of Theorem 5. Hence, we consider the Case
(4) only. Using the same type of reasoning as in the Case (3) of Theorem 8, we get Equation (8) and hence
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HC-pr )| [ a0 + Lot | < 102 0

Therefore,

H(—p;lzx) /t: 1/(1’7) {/t:{q(g) +sz(§)}d§] dy < —[2(17)]; < —z(t) < oo, as u — oo,

a contradiction to (A13). Rest of the theorem follows from the proof of the Theorem 5. This completes the
proof of the theorem. O

3. Final Comment and Examples

In this section, we will be giving some simple remarks to conclude the paper.

Remark 2. In Theorem 1-Theorem 9, G and H is allowed to be linear, sublinear or superlinear. A prototype of
the function G and H satisfying (A;), (As), (A7) and (As) is

(14 a|ulP)|u|7sgn(u) foru € R, )

wherea > 1ora = 0and 3,y > 0 arereals. For verifying (Ag), we may take help of the well-known inequality
(see [16, p. 292])

uf + o > h(p)(u+v)? foru,v >0, where h(p):= 1

w1 Pzl

{ L, 0<p<l,
We finalize the paper by presenting two examples, which show existence of main results.

Example 1. Consider the differential equation

% [e_‘”i [x(t) + x(t— n)}
3

where r(t) == e, p(t) =1, 7:=m,q(t) :=¢', 01 := &, G(u) :=u3,0(t) := ¢, 0» = 3 and H(u) := 5 for
t > mand u € R. All the assumptions of Theorem 1 can be verified. Hence, due to Theorem 1, every solution
of Equation (10) oscillates. Clearly x(t) = sin(t) for t > 7 is a solution Equation (10).

+et(x(t—%))3+et(x(t—37”))3:0 for t > 7, (10)

Example 2. Consider the differential equation

% [;(jt {x(t) —e x(t — 71?)}

where r(t) := tlz, R(t) =1 p(t) =e ™, 1:=mq(t) = 4e~7 cosh(m)t(t+1), 07 = %, G(u) == u, o(t) :=

4 cosh(m)t, o := mand H(u) := u for t > 2w and u € R. All the assumptions of Theorem 7 can be verified. In
particular, for (A11), we have

+4cosh(m)t[e 2 (t+1)x(t—F) +x(t—7m)] =0 fort>2m, (11)

I3
{—m

/ — [ 4cosh(m)C dldy = oo forany e > 0.

2 W J2n

Hence, due to Theorem 7, every solution of Equation (11) oscillates, and such a solution is x(t) = e’ sin(t) for
t > 27
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