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Abstract 
The study suggests asymptotic behavior of the solution to a new class of 

difference equations: ( )
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, ,ia b α  and β  are positive real numbers for 0,1, ,i k=  , and the initial 
conditions 1 0, , ,j jψ ψ ψ− − +   are randomly positive real numbers where 

2 1j k= + . Accordingly, we consider the stability, boundedness and periodicity 
of the solutions of this recursive sequence. Indeed, we give some interesting 
counter examples in order to verify our strong results. 
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1. Introduction 

The global asymptotic behavior of the solutions and oscillation of solution are 
two such qualitative properties which are very important for applications in 
many areas such as control theory, mathematical biology, neural networks, etc. 
It is impossible to use computer based (numerical) techniques to study the oscil-
lation or the asymptotic behavior of all solutions of a given equation due to the 
global nature of these properties. Therefore, these properties have received the 
attention of several mathematicians and engineers. 

Currently, much attention has given to study the properties of the solutions of 
the recursive sequences from scientists in various disciplines. Specifically, the 
topics dealt with include the following: 
- Finding equilibrium points for the recursive sequences; 
- Investigating the local stability of the solutions of the recursive sequences; 
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- Finding conditions which insure that the solutions of the recursive sequences 
are bounded; 

- Investigating the global asymptotic stability of the solutions of the recursive 
sequences; 

- Finding conditions which insure that the solutions of equation are periodic 
with positive prime period two or more; 

- Finding conditions for oscillation of solutions.  
Closely related global convergence results were well-gained from these articles 

[1]-[25]. Khuong in [14] studied the dynamics the recursive sequences 
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For further related and special cases of this difference equations see [4] [5] [6], 
[21] [22] [24]. 

Elsayed [9] studied the periodicity, the boundedness of the positive solution of 
the recursive sequences 
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Abdelrahman [1] considered analytical investigation of the solution of the 
recursive sequence 
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By new method, Elsayed [10] investigated the periodic solution of the 
equation 
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Also, Moaaz [18] completed the results of [10]. 
In this work, we deal with some qualitative behaviour of the solutions of the 

recursive sequence  

( )

( )

2 1
1

0 2 2 1

, 0,1, 2,
k i

i
i i i

a b η
η

η η

ψ
ψ η

αψ βψ
− +

+
= − − +

= + =
+∑           (1.1) 

where , ,ia b α  and β  are positive real numbers for 0,1, ,i k=  , and the the 
initial conditions 1 0, , ,j jψ ψ ψ− − +   are arbitrary positive real numbers where 

2 1j k= + . 
In the next, we will and to many of the basic concepts. Before anything, the 

concept of equilibrium point is essential in the study of the dynamics of any 
physical system. A point ψ  in the domain of the function Φ  is called an 
equilibrium point of the equation 

( )1 1, , , , 0,1, 2,kη η η ηψ ψ ψ ψ η+ − −= Φ =               (1.2) 

if ψ  is a fixed point of Φ  [ ( ), , ,ψ ψ ψ ψΦ = ]. For a stability of equilibrium 
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point, equilibrium point ψ  of equation (2) is said to be locally stable if for all 
0ε >  there exists 0δ >  such that, if ( )0,νψ − ∈ ∞  for 0,1, , kν =   with 

0
k

ii ψ ψ δ−=
− <∑ . As well, ψ  is said to be locally asymptotically stable if it is 

locally stable and there exists 0γ >  such that, if ( )0,νψ − ∈ ∞  for 0,1, , kν =   
with 0

k
ii ψ ψ γ−=
− <∑ , then limη ηψ ψ→∞ = . Also, ψ  is said to be a global 

attractor if used for every ( )0,νψ − ∈ ∞  for 0,1, , kν =  , we have 
limη ηψ ψ→∞ = . On the other hand, ψ  is said to be unstable if it is not locally 
stable. 

Finally, Equation (1.2) is called permanent and bounded if there exists 
numbers r and R with 0 r R< < < ∞  such that for any initial conditions 

( )0,νψ − ∈ ∞  for 0,1, , kν =   there exists a positive integer N which depends 
on these initial conditions such as r Rηψ< <  for all Nη ≥ . 

The linearized equation of Equation (1.1) about the equilibrium point ψ̂  is  

1
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Theorem 1.1. [15] Assume that ip ∈  for 0,1, ,i k=  . The ve+  
equilibrium of (1.1) is locally asymptotically stable if  

0 1 1.kp p p+ + + <                     (1.4) 

2. Local Stability of Equation (1.1) 
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for 0,1, ,r k=  . 
Theorem 2.1. Let ψ̂  be ve+  equilibrium of Equation (1.1). If 

( ) ( )2 ,B aα β α β− < +  

than ψ̂  is locally stable.  
Proof. From (2.2) to (2.3), we obtain 
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for 0,1, ,r k=  . Thus, the linearized equation of (1.1) is  

( )1 0 1 1 2 1 2 1 .k ky p y p y p yη η η η+ − + − += + + +  

It follows by Theorem 1.1 that Equation (1.1) is locally stable if 

( ) ( ) ( ) ( )
0 0 1,k kb b b bα α α α

α β α β ρ α β ρ α β ρ
+ + + + <

+ + + +
  

where ( )( )a Bρ α β= + + , and hence, 
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2 1.Bα

α β ρ
<
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Thus, we find 

( )2 ,Bα α β ρ< +  

and so, 

( ) ( )2 .B aα β α β− < +  

Hence, the proof is complete.  
□ 

In order to verify and support our theoretical outcomes and discussions, in 
this concern, we investigate several interesting numerical examples. 

Example 2.1. By Theorem 2.1, the ve+  equilibrium Equation (1.1) with 
2a = , 2k = , 0.3ib = , 0.1β =  and 1α = , is locally stable (see Figure 1).  

3. Global Stability of Equation (1.1) 

In the following theorem, we check into the global stability of the recursive 
sequence (1.1). 

Theorem 3.1. The ve+  equilibrium ψ̂  of Equation (1.1) is global attractor 
if  

( ).B a α β= −  
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Figure 1. The stable solution corresponding to difference Equation (1.1). 
 

Proof. We consider the function as follow: 
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From (2.2) and (2.3), we note that f  is increasing in 2 1ru +  and decreasing 
in 2ru  for all 0,1, ,r k=  . Suppose that ( ),λ µ  is a solution of the system  
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Then, we find  

0
,

k

i
i

a b λ
λ

αµ βλ=

= +
+∑  

and  

0
.

k

i
i

a b µ
µ

αλ βµ=

= +
+∑  

Hence, we get 

,Ba λ
λ

αµ βλ
= +

+
                      (3.1) 
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By (3.1) and (3.2), we obtain 

( ) ( )( )2 2 0.a B aβ λ µ β α λ µ− − + − − =  

Thus, 

( ) ( ) ( )( ) 0.a B aλ µ β λ µ β α− + − + − =  

Since ( )B a α β= − , we have that µ λ= . Hence, the proof of Theorem 3.1 is 
complete.                                                        □ 

4. Periodic Solutions 

In this section, we enumerate some basic facts concerning the existence of two 
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period solutions. 
Theorem 4.1. Equation (1.1) has prime period-two solutions if 

( )( ) 4 .a B a aβ α α β αβ+ − − >                  (4.1) 

Proof. Assume that Equation (1.1) has a prime period-two solution 
, , , , , , ,ρ σ ρ σ ρ σ   

We shall prove that condition (4.1) holds. From Equation (1.1), we see that  

( )2 2 1 1 2 1, ,k kη η η η η ηψ ψ ψ σ ψ ψ ψ ρ− − + − − += = = = = = = =   
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Thus, we get 
2 ,a a Bαρσ βρ ασ βρ ρ+ = + +                  (4.2) 

and 
2 .a a Bαρσ βρ ασ βσ σ+ = + +                  (4.3) 

From (4.3) and (4.2), we have 
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By combining (4.2) and (4.3), we obtain  
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Now, evident is that (4.4) and (4.5) that ρ  and σ  are both two positive 
distinct roots of the quadratic equation 

( )2 0.u uρ σ ρσ+ + + =                    (4.6) 

Hence, we obtain 

( ) 4 ,
a B a aβ α α

β α β
+ −

>
−

 

which has the same extent as 

( )( ) 4 .a B a aβ α α β αβ+ − − >  

Hence, the proof is complete.                                      □ 
The next numerical example is mimicry to enhance our results. 
Example 4.1. By Theorem 4.1, Equation (1.1) with 0.02α = , 0.01β = , 

500a = , 0 2b = , 1 200b =  and 2 20b = , has prime period two solution (see 
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Figure 2)  

5. Boundedness 

Theorem 5.1. Every solution of Equation (1.1) is bounded and persists.  

Proof. Let { } kη η
ψ

∞

=−
 be a Solution (1.1), we can conclude from (1.1) that 
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then,  

( )for all 2 1 .Ba a kηψ η
β

< ≤ + > − +  

Thus, the solution is bounded and persists and the proof is complete.     □ 
Conclusion 1. In this paper, we study a asymptotic behavior of solutions of a 

general class of difference Equation (1.1). Our results extend and generalize to 
the earlier ones. Moreover, we obtain the next results: 
- The ve+  equilibrium point ψ̂  of Equation (1.1) is local stable if 

( ) ( )2B aα β α β− < + . Also, if ( )B a α β= − , then ψ̂  is global attractor. 
 

 
Figure 2. Prime period two solution of Equation (1.1). 
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- Equation (1.1) has a prime period-two solutions if  
( )( ) 4a B a aβ α α β αβ+ − − > . 

- Every solution of (1.1) is bounded and persists. 
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